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An Interview with 
Fatima Akinola, 
Part 1 
 
Fatima Akinola is a graduate student in 
mathematics at the University of Florida. 
Her doctoral advisor is Andrew Vince. 
Fatima was raised in Nigeria and received 
her Bachelor of Science in Mathematics 
from Usmanu Danfodiyo University. She 
earned a master’s degree in mathematics 
from Marshall University where she worked 
with Michael Schroeder. 
 
This interview was conducted be Girls’ 
Angle mentor and Wellesley College 
undergraduate Elsa Frankel. 
 
Elsa: First of all, I’d like to invite you to 
introduce yourself and tell us how you got 
interested in math. 
 
Fatima: Hello! My name is Fatima Akinola, 
and I am a fifth-year PhD student of 
mathematics at the University of Florida. 
I’m originally from Nigeria, and when I was 
in my undergrad, I wanted to study 
medicine, but that just did not pan out, 
because I wasn’t given admission for it.   
 
I was given admission to study math. I had 
been very good at math from a young age. I 
attended competitions. I represented my 
state in a nationwide competition. So, math 
just felt natural, and I didn’t want to stay 
home, so I went ahead to study math in 
college.  
 
But then I became particularly interested in 
math in my third and fourth years of college 
when I began studying real analysis, 
complex analysis, and numerical analysis. I 
was like, “Yeah, this is fun.” 
 
But my dream, actually, was to become an 
engineer. I thought, after studying math, I’m 

just going to go do a master’s in engineering 
or something. I guess I didn’t know how the 
world works.  [Laughter] But then I 
graduated with a first class in math, and I 
pursuing a graduate degree seemed like the 
next best thing. I applied to schools and 
ended up moving to the United States. 
 
Elsa: That actually answers my next 
question perfectly, because I was wondering 
how you chose to pursue graduate school. 
I’m curious, though, because you wanted to 
do engineering, but chose to get a master’s 
degree in math at Marshall University. What 
led you to pursue math instead of 
engineering in the end? 
 
Fatima: Graduating first class in math made 
pursuing math feel natural. And I did enjoy 
math, and it seemed that I was really good at 
it. I think something else that also pushed 
me to pursue a graduate degree in math has 
to do with the situation in the part of the 
country that I was living in. I was born and 
raised in northern Nigeria, and we don’t get 
to see a lot of women in math. 
 
Just finishing with a first class, I kind of 
broke history in my country. At the time, my 
university was around 45 years old, and they 
never had a female first class student before. 
I think that made me want to prove that a 
woman in math is not an alien. [Laughter] 
It’s something that is really possible. 
 
And so, when I pursued my graduate degree, 
and I came here, I did a master’s at Marshall 
University before moving here to the 
University of Florida. 
 
When I got to Marshall, of course the goal 
was a master’s degree, but I luckily found an 
amazing advisor who I wanted to work with, 
and we did. 

At the time, my university was around 

45 years old, and they never had a 

female first class student before. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of the content.   We 
hope that you consider the value of such content and decide 
that the efforts required to produce such content are worthy of 
your financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                           Girls’ Angle: A Math Club for Girls 
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go to 
http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout. 
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Content Removed from Electronic Version 
 

 
 
 
 
 
 
 
 
 
 
 
 

America’s Greatest Math Game: Who Wants to Be a Mathematician. 
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Taylor Series for Tangent, Part 2 
by Ken Fan | edited by Jennifer Sidney 
 

Last time,1 Emily and Jasmine decided to find the Taylor series expansion for tan(x). To do that, 

they began computing higher and higher order derivatives of tan(x), with respect to x. They 

found that the nth derivative of tan(x), with respect to x, has the form 

 

1

(2sin( ))

cos ( )
n

n

p x

x+
, 

 

where pn(x) is a polynomial of degree n – 1 with lead coefficient 1. Furthermore, the polynomials 

pn(x) are defined recursively by p1(x) = 1 and 

 

pn + 1(x) = 
2( 1) ( ) (4 ) ' ( )

2
n n

n xp x x p x+ + −
, 

 

for n ≥ 1, where p′n(x) denotes the derivative of pn(x) with respect to x. The first few polynomials 

pn(x) are 

 

n pn(x) 

1 1 

2 x 

3 2 + x2 

4 8x + x3 

5 16 + 22x2 + x4 

6 136x + 52x3 + x5 

7 272 + 720x2 + 114x4 + x6 

8 3968x + 3072x3 + 240x5 + x7 

9 7936 + 34304x2 + 11616x4 + 494x6 + x8 

 

Let’s rejoin Emily and Jasmine’s conversation. 

 

Emily: What else can we say about these polynomials? 

 

Jasmine: It looks like the polynomials alternate between being even and odd functions because 

the powers of x alternate between being all even or all odd. 

 

Emily: Yes, that’s reflected in the recurrence relation. If pn(x) is an odd function, then xpn(x) will 

only have even powers of x, and (4 – x2)p′n(x) will also only have even powers of x since p′n(x) 

will only have even powers of x. A similar argument applies if pn(x) is an even function. 

 

 
1 See Volume 18, Number 4 of this Bulletin. 
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Jasmine: That proves it! Actually, I think this also follows from tan(x) being an odd function. 

 

Emily: Oh, I see what you’re saying. The derivative of an odd function is even, and the 

derivative of an even function is odd, so 
1

(2sin( ))

cos ( )
n

n

p x

x+
 will alternate between odd and even. 

 

Jasmine: Exactly. And cos(x) is even, so 
1

(2sin( ))

cos ( )
n

n

p x

x+
 is even if and only if pn(2sin(x)) is even, 

and it’s odd if and only if pn(2sin(x)) is odd. And since 2sin(x) is odd, pn(2sin(x)) is even if and 

only if pn(x) is even, and it’s odd if and only if pn(x) is odd. 

 

Emily: I love it when you can see something conceptually! 

 

Jasmine: Do you think all of these polynomials have integer coefficients? 

 

Emily: It does seem that way. Well, in the recurrence relation, the computation of the numerator 

only involves operations that will result in integer values, so all we have to check is that the 

numerator is a polynomial whose coefficients are all even. 

 

Jasmine: Okay. So suppose that pn(x) = c0 + c1x + c2x
2 + … + cn – 1x

n – 1. We know that either the 

even or the odd coefficients will all be zero, but we don’t know which, so I’m just going to leave 

them all as variables. 

 

Emily: Okay. 

 

Jasmine: Then p′n(x) = c1 + 2c2x + 3c3x
2 + 4c4x

3 + … + (n – 1)cn – 1x
n – 2. 

 

Emily: Yes. 

 

Jasmine: The coefficient of xk in the numerator, (n + 1)xpn(x) + (4 – x2)p′n(x), would then be 

 

(n + 1)ck – 1 + 4(k + 1)ck + 1 – (k – 1)ck – 1, 

 

which can be simplified to 

 

(n – k + 2)ck – 1 + 4(k + 1)ck + 1. 

 

Emily: The second term, 4(k + 1)ck + 1, will always be even, so we have to show that the first 

term is always even. 

 

Jasmine: It doesn’t look like it has to be even… 

 

Emily: Maybe this is where we have to use the even/odd nature of these polynomials. If n is odd, 

then pn(x) is an even function, so ck = 0 for all odd k. Therefore, (n – k + 2)ck – 1 is nonzero only 

when k is odd, and if k is odd, then n – k + 2 is even. So that works! 



 

© Copyright 2025 Girls’ Angle.  All Rights Reserved.                                                                9 

 

Jasmine: Nice! And if n is even, then pn(x) is an odd function, so ck = 0 for all even k; this means 

that (n – k + 2)ck – 1 is nonzero only when k is even, and if k is even, then n – k + 2 is also even! 

The polynomials do have integer coefficients! 

 

Emily: Since k ≤ n, our formula for the coefficients also shows that the coefficient of xk in pk(x) 

is, in fact, positive for odd k when pn is odd, or for even k when pn is even. 

 

Jasmine: I think that means that when pn(x) is an even function, it has no real roots, and if it is an 

odd function, then its only real root is x = 0. This follows from symmetry, and also because as 

soon as x > 0, then pn(x) > 0. 

 

Emily: In fact, if we fix k, then ck, n strictly increases for k ≥ n – 1, so pn + 2(x) > pn(x) for all x > 0. 

These properties of pn(x) are amusing; but to compute the Taylor series for tan(x), we only need 

the values of the derivatives of tan(x) at x = 0, which means we only need to know pn(0). 

 

Jasmine: Good point. We know pn(0) = 0 for even n, so what is pn(0) for odd n? 

 

Emily: Oh dear. 

 

Jasmine: What’s the matter? 

 

Emily: The recursion formula involves the first derivative of pn(x), with respect to x. That means 

that the constant term of pn(x) will have contributions from the linear term of pn – 1(x), which will 

have contributions from the quadratic term of pn – 2(x), etc. So it seems that to compute pn(0) with 

our recurrence relation, we still have to compute all the coefficients of pn(x). 

 

Jasmine: No wonder they don’t derive the Taylor series of tan(x) in school! 

 

Emily: Let’s let ck, n be the coefficient of xk in pn(x). Then our coefficient recursion relation is 

 

ck, n + 1 = 
2

2

n k− +
ck – 1, n + 2(k + 1)ck + 1, n, 

 

where we’ll interpret c-1, n as 0. 

 

Jasmine: It’s kind of like a more complex version of Pascal’s triangle. Let’s make a diagram 

showing how the coefficients of pn(x) feed into the coefficients of pn + 1(x). 

 

Emily: Great idea! 

 

Emily and Jasmine create a table of the coefficients of the polynomials pn(x). They write the 

coefficients of the polynomial in black. In blue over each arrow, they write the factor by which 

the coefficient at the base of the arrow contributes to the coefficient that the arrow points to. See 

the diagram at the top of the next page. 
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The coefficients of the polynomials pn(x) arranged in a triangular array. 

 

The coefficients of pn(x) are written in the nth row of black numbers in order of lowest degree to 

highest. For example, the 34304 in the bottom row is the coefficient of x2 in p9(x), and the 

recursion formula tells us that 34304 = 4(3968) + 6(3072). 

 

Jasmine: I see. The arrows that point southeast are arranged in diagonals (that are infinitely 

long), and those arrows are weighted by the numbers 1, 2, 3, etc., counting from the uppermost 

diagonal and going down. On the other hand, the arrows that point southwest are arranged in 

diagonals (that are finite), and the arrows on each such diagonal are weighted by the consecutive 

even integers starting from the lowest arrow on the diagonal and going up and to the right. 

 

Emily: The numbers we need to get the Taylor series for tangent are in the first column: 1, 0, 2, 

0, 16, 0, 272, 0, 7936, … 

ck, n 
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Jasmine: Yes. That tells us that the Taylor series for tangent begins 

 

x + 
2

3!
x3 + 

16

5!
x5 + 

272

7!
x7 + 

7936

9!
x9 + … = x + 

1

3
x3 + 

2

15
x5 + 

17

315
x7 + 

62

2835
x9 + … 

 

Emily: It’s curious that all the entries below the diagonal of 1’s are even. 

 

Jasmine: Yes, that’s true because the 1’s feed to the number down and to the left by a factor of 2, 

so all the entries in the diagonal just below the 1’s will be even. And then the recursion formula 

shows that all the entries below that diagonal will also be even. 

 

Emily: Wait a second… the entries in the second diagonal below the 1’s all seem to be multiples 

of 4… and the entries in the third diagonal below the 1’s are all multiples of 8… 

 

Jasmine: Are you thinking that all the entries in the kth diagonal below the 1’s are going to be 

multiples of 2k? 

 

Emily: Maybe! 

 

Jasmine: So if we set dk, n to be ck, n/2(n – k + 1)/2, you’re saying that the dk, n will all be nonnegative 

integers? 

 

Emily: Yes. Let’s substitute 2(n – k + 1)/2dk, n for ck, n in the recurrence relation for the coefficients. 

Hopefully, from that relation we’ll be able to see that the dk, n are nonnegative integers. 

 

Jasmine: Good idea! That substitution gives us 

 

2(n + 1 – k + 1)/2dk, n + 1 = 
2

2

n k− +
2(n – (k – 1) + 1)/2dk – 1, n + 2(k + 1)2(n – (k + 1) + 1)/2dk + 1, n, 

 

where, just as with the ck, n, we assume that d-1, n = 0 for all n. If we divide throughout by 

2(n + 1 – k + 1)/2, we get 

dk, n + 1 = 
2

2

n k− +
dk – 1, n + (k + 1)dk + 1, n. 

 

That’s almost the same as the recurrence relation for the ck, n! The only difference would be to 

halve all the entries on the flow arrows that point to the southwest in our “flow diagram” for the 

coefficients ck, n. Since d0, 1 = 1, that does mean that all the dk, n are nonnegative integers! 

 

Emily and Jasmine make a “flow diagram” for the dk, n. See the figure at the top of the next page. 

 

Emily: Unfortunately, I don’t see how we can compute the dk, n without using the recurrence 

relation. All this observation does, it seems, is to make the entries smaller, although some of the 

numbers have relatively large prime factors. This makes me think that unlike the entries in 

Pascal’s triangle, there isn’t going to be a simple expression for the dk, n as a product. 
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Jasmine: The sums of the entries in each row of Pascal’s triangle give the powers of 2. I wonder 

if the sums of the entries in each row of our dk, n triangle yield some simple sequence. 

 

Emily: Let’s check! I get row sums of 1, 1, 2, 5, 16, 61, 272, 1385, 7936, … 

 

Jasmine: Hold on! That’s strange. For the odd rows, the sums are the nonzero entries in the first 

column of the triangle of ck, n values: 1, 2, 16, 272, 7936, …! 

 

Emily: Whoa, that can’t be a coincidence! What’s going on here? 

 

To be continued… 

 

dk, n 
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Anti-magic Squares1  
by Robert Donley2                            
edited by Amanda Galtman 
 
For this installment, we consider a new direction based on semi-magic squares. In the preceding 
series on graph theory, we saw that semi-magic squares with 0/1 entries become difficult as their 
size grows. For the case of size 3, the situation is tractable, and we introduce the anti-magic 
square as a variation with interesting counting properties. 
 
To begin, we review semi-magic squares of size 3; much of this material appears in the 
preceding installments, but no graph theory will be needed for this new series. Our goal is to find 
a simpler model for such squares and to derive counting formulas based on line sums. It will be 
helpful to recall the binomial series formula and how generating functions work (“Fibonacci 
Numbers and Multiset Counting,” Volume 15, Number 6, and “Generating Functions for 
Compositions,” Volume 16, Number 4). 
 
Definition: A semi-magic square of size n with line sum L is a square matrix of size � with 
nonnegative integer entries such that the sum along each row or column equals �. 
 
Example: A square matrix with all entries equal to zero is semi-magic with L = 0. 
 
We can also directly identify all semi-magic squares with line sum L = 1. 
 
Definition: A permutation matrix is a square matrix having exactly one 1 in each row and 
column. All other entries vanish. 
 
Exercise: Prove that a semi-magic square with line sum L = 1 must be a permutation matrix. 
 
Example: The square matrix Jn of size n with all entries equal to 1 is a semi-magic square with 
line sum L = n. 
 
Exercise: Prove that if M and N are semi-magic squares with line sums L and L′, respectively, 
then M + N is a semi-magic square with line sum L + L′. 
 
Thus, the sum of any L permutation matrices is a semi-magic square with line sum L. If M is a 
semi-magic square with line sum L, then kM, the sum of k copies of M, is a semi-magic square 
with line sum kL. 
 
Example: Consider the six permutation matrices of size 3: 
 

P1 = 

1 0 0

0 1 0

0 0 1

 
 
 
 

, P2 = 

0 0 1

1 0 0

0 1 0

 
 
 
 

, P3 = 

0 1 0

0 0 1

1 0 0

 
 
 
 

, 

 

 
1 This installment is 23rd in a series that began in Volume 15, Number 3. This installment is the first of a new 
subseries. 
2 This content is supported in part by a grant from MathWorks. 
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P4 = 

1 0 0

0 0 1

0 1 0

 
 
 
 

, P5 = 

0 1 0

1 0 0

0 0 1

 
 
 
 

, and P6 = 

0 0 1

0 1 0

1 0 0

 
 
 
 

. 

 
Note that, to obtain the latter three squares, we switch the last two columns of the first three 
squares. We see that 
 

P1 + P2 + P3 = P4 + P5 + P6 = J3, 
 
and that J3 has line sum L = 3. 
 
The converse of the statement about permutation matrices is true. 
 
Theorem (Birkhoff-von Neumann): Every semi-magic square with line sum L is a sum of L 
permutation matrices.   
 
Before we prove this for size 3, we note that if M is a semi-magic square with line sum L, then 
permuting any rows or columns of M results in a semi-magic square with line sum L. A similar 
statement holds for the transpose of M. 
 
Proof of theorem for size 3. The proof will require parts that we leave to the reader as exercises. 
Fix a positive L. Suppose the statement is true for all semi-magic squares with line sum less than 
L. If every entry of M is positive, then we can subtract the matrix J3 from M to obtain a semi-
magic square M ′ with line sum L – 3, which in turn can be written as a sum of L – 3 permutation 
matrices. Thus 
 

M = M ′ + P1 + P2 + P3 
 
is a sum of L permutation matrices. Now show the following: 
 
Exercise: Let M be a semi-magic square of size 3 with positive line sum L. Prove that there 
exists some permutation of the rows and columns of M such that the new diagonal entries are all 
positive. 
 
Definition: We call two permutation matrices P and Q deranged if their sum has entries with 
value at most 1. That is, such matrices share no entries of 1 in the same position. 
 
Exercise: In the previous exercise, suppose M has at least one vanishing entry. Prove that we can 
obtain a new semi-magic square M ′′ with no vanishing entries by adding two deranged 
permutation matrices to M. 
 
To finish the proof, if M has some vanishing entries, then, for some deranged permutation 
matrices P and Q, M + P + Q has no vanishing entries and line sum L + 2. Now M ′ defined as 
M + P + Q – J3 has line sum L – 1 and is a sum of L – 1 permutation matrices. But 
P′ = J3 – P – Q is a permutation matrix, so M = M ′ + P′ is a sum of L permutation matrices. □ 
 
By the Birkhoff-Von Neumann theorem, any semi-magic square M of size 3 may be expressed in 
the form 
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M = a1P1 + a2P2 + a3P3 + a4P4 + a5P5 + a6P6, 

 
where each ai ≥ 0. An important advantage of this representation is that, as long as we remember 
the ordering of the permutation matrices, we can simply describe M as an ordered sextuple 
a = (a1, a2, a3, a4, a5, a6). Note that the line sum of M is the sum of the entries of a. 
 

It is advantageous to configure our notation by arranging the sextuple in a 
rectangle with two rows, as seen on the right. 
 
One disadvantage is that this representation need not be unique; 
that is, there may be many ways to describe M as a rectangle. 
For instance, J3 is described by both rectangles at right: 
 
Exercise: Suppose the sextuple a = (a1, a2, a3, a4, a5, a6) corresponds to M. Prove that 
 

a′ = (a1 + 1, a2 + 1, a3 + 1, a4 – 1, a5 – 1, a6 – 1) 
 
also corresponds to M when all entries of a′ are nonnegative. 
 
This shifting of 1s is the only defect in uniqueness, and we visualize this defect in the rectangle 
notation as shifting triples of 1s between rows. Suppose M is represented by both 
  

a = (a1, a2, a3, a4, a5, a6) and a′ = (a′1, a′2, a′3, a′4, a′5, a′6). 
 
Then, 
 

M = a1P1 + . . .  + a6P6 = a′1P1 + . . . + a′6P6, 
 
or 
 

(a1 – a′1)P1 + . . . + (a6 – a′6)P6 = 0. 
 
Exercise: Suppose b1P1 + . . .  + b6P6 = 0. Prove that b1 = b2 = b3 = -b4 = -b5 = -b6 by rewriting 
the equation as matrices of size 3. 
 
Exercise: From the previous exercise, prove that the only way two sextuples can represent the 
same M is if they differ by one or more shiftings of 1s as above. 
 
To summarize the preceding discussion, we highlight three key points: 
 

• a and a′ = (a1 + k, a2 + k, a3 + k, a4 – k, a5 – k, a6 – k) represent the same M for all k when 
a′ has all entries nonnegative, 

• two sextuples corresponding to M must be of this form, and 

• we obtain a preferred representative by upshifting triples of 1s until one of a4, a5, or a6 
vanishes. 

 

a1 a2 a3 

a4 a5 a6 

 

1 1 1 

0 0 0 

 

0 0 0 

1 1 1 

 

= 



 

© Copyright 2025 Girls’ Angle.  All Rights Reserved.                                                                16 

It follows immediately that M has a unique representation when one of a1, a2, or a3 vanishes in 
the preferred representation. Such squares M have at least one vanishing entry, and the 
corresponding rectangles have at least one vanishing entry in each row. 
 
Exercise: Express the following semi-magic squares as sextuples and rectangles. List all 
possible rectangles when not unique. 
 

M1 = 

2 3 2

1 1 5

4 3 0

 
 
 
 

, M2 = 

3 2 1

2 2 2

1 2 3

 
 
 
 

, M3 = 

4 2 2

2 3 3

2 3 3

 
 
 
 

. 

 

Exercise: Find a column operation on M that interchanges the rows of a rectangle. How does 
transpose on M affect a rectangle? 
 
Exercise: List all 21 semi-magic squares of size 3 and line sum L = 2. Partition these squares 
into subsets by the number of entries with value 2, and find the corresponding sextuples. For 
each fixed subset, how are the sextuples of the squares in that subset related? 
 
In the previous exercise, there are three 
representative rectangles: 
 

Exercise: Reconcile the count of 21 using the formula: 21 = (3 + 3) + (3 × 3) + 6. 
 

Exercise: Repeat the previous analysis for M with line sum L = 3. In this case, the only square 
with a non-unique representative is J3. 
 
Exercise: Repeat the previous analysis for M with line sum L = 4. 
 

As usual, we denote the binomial coefficient “n choose k” by n

k

 
 
 

, and, as a convention, we 

suppose this coefficient vanishes if k is negative or greater than n. 
 

Theorem: Let ρ(L) be the number of semi-magic squares of size 3 with line sum L. Then 
  

ρ(L) = 
5 2

5 5

L L+ +   
−   

   
 = 

2( 2)( 1)( 3 4)

8

L L L L+ + + +
. 

 

Proof. Recall that the number of ways to put L balls into n boxes is given by the binomial 

coefficient 1

1

L n

n

+ − 
 

− 
. If we consider the preferred representation of M as a rectangle with 

vanishing of one of the lower entries, then ρ(L) is the number of ways to put L balls into six 
boxes, except that we discard any sextuple in which all lower entries are positive. To construct a 
rectangle of the latter type, we pre-assign one ball to each of these entries and then place L – 3 
balls into the six boxes in any manner. The first formula now follows. For the second formula, 
we expand the binomial coefficients into factorials and simplify. □ 
 
Exercise: Prove the second formula for ρ(L). 
 

1 1 0  1 0 0  2 0 0 

0 0 0  1 0 0  0 0 0 
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Exercise: Use the second formula to calculate ρ(L) for 0 ≤ L ≤ 6. Search for this sequence in the 
Online Encyclopedia of Integer Sequences (oeis.org). 
 
Next, we find the generating function associated to ρ(L), which is the formal power series 
 

F(x) = ρ(0) + ρ(1)x + ρ(2)x2 + ρ(3)x3 + . . .. 
 
Corollary: Let ρ(L) be the number of semi-magic squares of size 3 with line sum L. Then the 
generating function for ρ(L) is given by 
 

F(x) = 
3 2

6 5

1 1

(1 ) (1 )

x x x

x x

− + +
=

− −

. 

 
Proof. The corollary follows from the formula for the binomial series. □ 
 
From the second formula in the corollary, we obtain another formula for ρ(L), which again 
follows from the formula for the binomial series. 
 
Corollary: Let ρ(L) be the number of semi-magic squares of size 3 with line sum L. Then 
  

ρ(L) = 
4 4 4

4 3 2

L L L+ + +     
+ +     

     
. 

 
Exercise: Prove the third formula using the binomial series. 
 
Exercise: Use the third formula to calculate ρ(L) for 0 ≤ L ≤ 6. Then adapt the proof of the 
theorem to give a counting argument for this formula. Instead of discarding cases without zeros, 
model your argument on how to place zeros in the last three entries. 
 
Let’s summarize what we have so far: 
 

• a preferred representation for semi-magic squares of size 3 as sextuples or rectangles, and 

• several formulas for the number of semi-magic squares of size 3 with line sum L. 
 

We might hope that our arguments extend to semi-magic squares of size 4, but the difficulties 
with semi-magic squares of size 4 and larger have been noted and explored in the series 
preceding this installment. 

Exercise: Write the matrix D = 

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

 
 
 
  
 

 as a sum of permutation matrices in four distinct 

ways. 
 
To find a set of matrices that extends the sextuple or rectangle models, we instead consider anti-
magic squares, which we now define. 
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Definition: Fix a positive integer n. Let Ri be the square matrix of size n for which the entries in 
the ith row all equal 1 and all other entries vanish. Likewise, define Ci in a similar manner, but 
for the ith column. 
 
Definition: The set of anti-magic squares of size n consists of all sums of matrices of type Ri and 
Ci. That is, an anti-magic square M is a square matrix of the form 
 

M = r1R1 + . . . + rnRn + c1C1 + . . . + cnCn, 
 
with integers ri, ci ≥ 0. We define the index of M to be the sum 
 

i(M) = r1 + . . . + rn + c1 + . . . + cn. 
 
Example: The anti-magic squares of size 3 are sums of the matrices 
 

R1 = 

1 0 0

1 0 0

1 0 0

 
 
 
 

, R2 = 

0 1 0

0 1 0

0 1 0

 
 
 
 

, R3 = 

0 0 1

0 0 1

0 0 1

 
 
 
 

, 

 

C1 = 

1 1 1

0 0 0

0 0 0

 
 
 
 

, C2 = 

0 0 0

1 1 1

0 0 0

 
 
 
 

, C3 = 

0 0 0

0 0 0

1 1 1

 
 
 
 

. 

 

Exercise: Prove that the index of M is the sum of the diagonal entries of M. 
 
Exercise: How many anti-magic squares have index 1? Index 2 through n? 
 
We see that the set of anti-magic squares is preserved under permutations of rows and columns, 
and transpose interchanges Ri and Ci. Of course, the index is unchanged under these operations. 
Furthermore, most of the counting results for semi-magic squares of size 3 carry over as a 
consequence of the relation 
 

R1 + . . . + Rn = C1 + . . . + Cn = Jn. 
 
Exercise: Repeat the sequence of exercises for semi-magic squares of size 
3 to prove that every anti-magic square of size n is uniquely represented by 
a rectangle with width n and nonnegative entries such that at least one ci 
vanishes. 
 
The following exercise appears as problem 53(c) in Chapter 4 of Richard Stanley’s book 
Enumerative Combinatorics, Volume 1.3 
 
Exercise: Prove that the number of anti-magic squares of size n and index L is given by the 
formula 
 

 
3 Stanley, R.P., 2011. Enumerative combinatorics, Volume 1, 2nd edition. Cambridge studies in advanced 

mathematics. 

r1 . . .  r3 

c1 . . .  c3 
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ρ′(L) = 
2 1 1

2 1 2 1

L n L n

n n

+ − + −   
−   

− −   
. 

 
Exercise: Find a generating function for ρ′(L) and a second formula for ρ′(L) based on the third 
formula for ρ(L). Find the first 10 terms when n = 2 and n = 4. 
 
We finish with a tabular method to calculate ρ′(L). Recall the geometric series formula 
 

P(x) = 
1

1 x−

 = 1 + x + x2 + x3 + . . .. 

 
If G(x) = s0 + s1x + s2x

2 + . . . is the generating function for the sequence sm, then P(x)G(x) is the 
generating function for the sequence tk of partial sums of sm, where  
 

tk = s0 + s1 + . . . + sk. 
 
When n = 3, the numerator of ρ(L) is G(X) = 1 + x + x2, for which we record the coefficients with 
increasing degree r in column 0 of the table below. Each subsequent column s records the entries 
of P(x)sG(x). To implement the partial sum operation, we add the entries in a column down to a 
given position and place the sum in the cell to the right. 
 
Alternatively, we add an entry in a given position to the entry one down and to the left, and we 
place the sum in the position below the original position. For instance, in column 3, 19 + 12 =31. 
Column 5 gives the list of values for ρ(L). 
 
 

r  s 0 1 2 3 4 5 

0 1 1 1 1 1 1 
 

1 1 2 3 4 5 6 
 

2 1 3 6 10 15 21 
 

3 0 3 9 19 
 

34 55 
 

4 0 3 12 
 

31 
 

65 120 
 

5 0 3 15 46 111 231 
 

6 0  3 18 64 175 406 
 

 

 

Exercise: Explain why the three-term partial sum calculation works. Then use the tabular 
method to calculate the first 10 values of ρ′(L) for n = 2, 4, 5. 
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Hypercube Sections: Combinatorics 
by Addie Summer | edited by Amanda Galtman 
 
Let n be a positive integer greater than 1, and let k be 
an integer such that 0 < k < n. 
 
Last time,1 we found that the hypercube cross section 
Ck, n has 2n (n – 2)-dimensional faces, unless k = 1 or 
k = n – 1. In those cases, Ck, n is an (n – 1)-dimensional 
simplex, which has n (n – 2)-dimensional faces. 
 
We also found that Ck, n has: 

 

nCk = 
!

!( )!

n

k n k−

 vertices, 

 

!

2( 1)!( 1)!

n

k n k− − −

edges, 

 

and 
!( 2)

6( 1)!( 1)!

n n

k n k

−

− − −

 triangular faces. 

 
Technically, we derived the formula for the number of 
faces under the assumption that 1 < k < n – 1. But note 
that when k = 1 or k = n – 1, the object Ck, n is an 
(n – 1)-dimensional simplex, which has nC3 triangular 
faces (since any three of its n vertices form a triangular 
face). The last formula does, indeed, equal nC3 when 
k = 1 or k = n – 1. 
 
Let’s press on! 
 
Instead of counting 3D faces of Ck, n, I feel like tackling 
the general case. We’ve seen that the geometric shapes 
appearing in our geometric version of Pascal’s triangle 
in the rows above the nth are the possible faces of Ck, n. So let’s ask: how many faces of Ck, n are 
congruent to Cj, p, where p < n and 0 < j < p? (The latter inequality ensures that Cj, p is a (p – 1)-
dimensional object and not a point.) 
 
We have to be mindful that Cj, p is congruent to Cp – j, p. Please keep this symmetry of Pascal’s 
triangle in mind in the following discussion. 
 
As we saw, we can find all the (p – 1)-dimensional faces of Ck, n by looking at its intersection 
with various p-dimensional faces of the hypercube. We can obtain all these p-dimensional faces 
of the hypercube by first picking a set I of p indices (between 1 and n, inclusive).  Then, for i not 

 
1 “Hypercube Sections: Pascal Revisited,” Volume 18, Number 4. 

Here, Addie takes the n-dimensional 
hypercube to be the points in n-dimensional 
space with coordinates (x1, x2, x3, …, xn), 
where -1 ≤ xk ≤ 1 for k = 1, 2, 3, …, n. Its 
vertices are the points each of whose 
coordinates is either 1 or -1. 
 
For each integer k from 0 to n, let Vk, n be the 
set of vertices that have exactly k 
coordinates equal to -1, and let Ck, n be the 
convex hull of the vertices in Vk, n. If it is 
clear what n is, Addie might omit the n and 
simply write Vk and Ck. 
 

This is the geometric version of Pascal’s 
triangle we found last time. Each shape is 
the “prism” formed by using the two 
shapes directly above as bases. The nth 
row gives snapshots of cross sections of 
the n-dimensional hypercube by an (n – 
1)-dimensional hyperplane passing 
through. The number of vertices of each 
shape is given by Pascal’s triangle. 
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in I, we set each xi independently to 1 or -1. For i in I, we let xi range freely over the interval 
[-1, 1]. We called the indices in I the “free” indices. Let’s call the indices outside I the “fixed” 
indices. We also found it convenient to define S to be the sum of xi over the fixed indices i and 
saw that S has the same parity as n – p. 
 
The points of this p-dimensional hypercube that intersect the cross sectioning hyperplane 
 

x1 + x2 + x3 + . . . + xn = n – 2k 
 

(that “slices out” Ck, n) are those for which 2
i

i I

x n k S
∈

= − − . Usually, there are two ways for 

these points to correspond to a face congruent to Cj, p, because of the “Pascal symmetry” 
mentioned earlier (i.e., that Cj, p is congruent to Cp – j, p). If j ≠ p – j, i.e., p ≠ 2j, then one way is 
for n – 2k – S = p – 2j, and the other way is for n – 2k – S = 2j – p. If p = 2j, then there is only 
one way; these points must correspond to a face congruent to Cj, 2j. 
 
To avoid confusion, let’s count only the ways that correspond to n – 2k – S = p – 2j or, after 
rearranging, S = n – p – 2(k – j). Later, we’ll account for the “other way” by combining the result 
with the formula obtained by substituting p – j for j, in case p ≠ 2j. Let’s also say that a face is 
strictly congruent to Cj, p if and only if that face is the cross section of a p-dimensional 
hypercube facet exactly in this way, with S = n – p – 2(k – j). 
 
Recall that S is the sum of the fixed coordinates xi. These coordinates are equal to +1 or -1, and 
since there are n – p of these fixed coordinates, it must be that |S| ≤ n – p. Therefore, the 
condition S = n – p – 2(k – j) implies 
 

-(n – p) ≤ n – p + 2(j – k) ≤ n – p. 
 
The first inequality is equivalent to p – j ≤ n – k, and the last inequality is equivalent to j ≤ k. 
This makes sense because if a vertex of Ck, n is a vertex of a (p – 1)-dimensional face contained 
in the p-dimensional hypercube with free indices I, then we need exactly j of these free indices to 
correspond to coordinates set to -1. The remaining p – j free indices correspond to coordinates 
set to +1. At the same time, a total of k of the vertex’s coordinates must be -1, while the 
remaining n – k of them must be +1. This is possible only if k ≥ j and n – k ≥ p – j. 
 
Let’s assume the inequalities k ≥ j and n – k ≥ p – j hold (and also that 0 < k < n and 0 < j < p). 
Fix a vertex v in Ck, n. We know that k of its coordinates are equal to -1 and n – k of its 
coordinates are equal to +1. 
 
How many faces have v as a vertex and are strictly congruent to Cj, p with n – 2k – S = p – 2j? 
 
There are as many as the number of ways to pick j of the k coordinates of v that are equal to -1 
multiplied by the number of ways to pick p – j of the n – k coordinates of v that are equal to +1: 
 

kCj ∙ n – kCp – j. 
 
If we interpret aCb as 0 if b < 0 or b > a, then this formula is valid for all 0 < k < n, so let’s agree 
to do that! 
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There are nCk vertices of Ck, n, but if we add up kCj ∙ n – kCp – j over all vertices, we will count each 
face strictly congruent to Cj, p (with n – 2k – S = p – 2j) a total of pCj times. Therefore, the 
number of faces strictly congruent to Cj, p with n – 2k – S = p – 2j is equal to 
 

n k k j n k p j

p j

C C C

C

− −
⋅ ⋅

 j. 

 
Let’s see if we can simplify this expression. 
 

n k k j n k p j

p j

C C C

C

− −
⋅ ⋅

 = 
! ! ( )! !( )!

!( )! !( )! ( )!( )! !

n k n k j p j

k n k j k j p j n k p j p

− −

− − − − − +

 

 = 
!

!( )!( )!

n

p k j n k p j− − − +

 

 
Notice that p + (k – j) + (n – k – p + j) = n. That means that this expression corresponds to a 
trinomial coefficient. Specifically, it is the coefficient of xpyk – jzn – k – p + j in the expansion of 
(x + y + z)n. Multiplying the numerator and denominator by (n – p)!, we can also express this as: 
 

!( )!

!( )!( )!( )!

n n p

p n p k j n k p j

−

− − − − +

 = nCp ∙ n – pCk – j. 

 
I wonder if this expression can be interpreted in terms of the geometry. We’re finding the faces 
that are strictly congruent to Cj, p by intersecting Ck, p with p-dimensional hypercubes. So perhaps 
the first factor, nCp, can be interpreted as choosing our p free coordinates I. Having chosen the 
free coordinates, we then need to set each fixed coordinate to +1 or -1 in such a way that they 
sum to S = n – p – 2(k – j). This means that of the n – p fixed coordinates, exactly k – j of them 
must be set to -1…so that accounts for the second factor! 
 
The product nCp ∙ n – pCk – j is nonzero only if n ≥ p and n – p ≥ k – j. These are the same 
inequalities that we found earlier for the corresponding p-dimensional hypercube face to contain 
a (p – 1)-dimensional face of Ck, n that is strictly congruent to Cj, p! 
 
Notice that nCp ∙ n – pCk – j = 1 when n = p and j = k. This makes sense because it’s the number of 
faces of Ck, n that are congruent to Ck, n. There’s only one, namely, itself! 
 
To summarize, the number of faces of Ck, n, where 0 < k < n, that are strictly congruent to Cj, p, 
where 0 < j < p, is given by nCp ∙ n – pCk – j, provided that n ≥ p and n – p ≥ k – j. This formula 
covers all faces except the vertices. But we know that there are nCk vertices of Ck, n. 
 
If p ≠ 2j, then the number of faces of Ck, n that are congruent to Cj, p is 
 

nCp(n – pCk – j + n – pCk – p + j) = nCp(n – pCk – j + n – pCn – k – j). 
 
Let’s see if we can develop a clearer picture of which facets occur in Ck, n. If Cj, p is a facet of 
Ck, n, where 0 < j < p, we have seen that n ≥ p and n – p ≥ k – j. The first inequality says that the 
facets of Ck, n appear above or in the same row as Ck, n, which makes sense because the objects in 
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the rows below are higher-dimensional objects. In order for nCp ∙ n – pCk – j to be positive, we must 
have k – j ≥ 0, so n – p ≥ k – j ≥ 0. If we think of p as fixed, the values of j that satisfy this 
compound inequality correspond to the Cj, p that are facets of Ck, n. So let’s rearrange these 
inequalities to isolate j. The first inequality, n – p ≥ k – j, rearranges to j ≥ k + p – n. The second 
inequality, k – j ≥ 0, rearranges to j ≤ k. Thus, 
 

k + p – n ≤ j ≤ k. 
 
This compound inequality bounds j between lines in Pascal’s triangle that are parallel to its edges 
and pass through the kth entry in row n. Combining this with the requirement that 0 < j < p, we 
can illustrate with this figure: 
 

 
The shaded parallelogram covers those Cj, p, 0 < j < p, that appear as facets of Ck, n 
and for which the formula for the number of such facets that are strictly congruent 
to Cj, p applies. The only missing facets are the vertices, of which there are nCk. For 
vertices, our formula works only when p = j = 0. 

 
Combinatorics of C2, 5 

 
Among the 4D cross sections, up to congruence, there are only two: C1, 5 and C2, 5. We know that 
C1, 5 is a 4D regular simplex with five vertices, 10 edges, 10 triangular faces, and five tetrahedral 
3D faces. For fun, let’s apply what we’ve learned to get to know C2, 5 better. 
 
According to our analysis, faces of C2, 5 are regular tetrahedra (C1, 4), regular octahedra (C2, 4), 
equilateral triangles, line segments (all the same length, as is true for all Ck, n), and vertices. 
 
  

. 

. 

. 
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Using our formula, there are 
 

5C4 ∙ 1C1 = 5 regular tetrahedral faces 

5C4 ∙ 1C0 = 5 regular octahedral faces 

5C3 ∙ 2C1 + 5C3 ∙ 2C0 = 30 equilateral triangular faces 

5C2 ∙ 3C1 = 30 edges 
and 5C2 = 10 vertices. 

 
In 5D Euclidean space, the vertices of C2, 5 are the 10 points whose coordinates are permutations 
of (1, 1, 1, -1, -1). Each vertex has six edges emanating from it since each edge has two vertices. 
But if we multiply the number of edges by 2, we will overcount the vertices exactly by the 
number of edges emanating from each vertex. Similarly, each vertex is a vertex of nine triangular 
faces, and each edge is an edge of three equilateral triangular faces. Let v be a vertex, and let t be 
the number of tetrahedral faces that v is a vertex of. Since a tetrahedron has four vertices, adding 
up all the vertices for each tetrahedron will overcount the number of tetrahedra per vertex by a 
factor of t. That is, 4(5)/t = 10. Hence, every vertex is a vertex of two tetrahedral faces. A similar 
argument shows that every vertex is the vertex of three octahedral faces. 
 
How do these five 3D faces at a given vertex meet each other? Suppose we have two octahedral 
faces. From our earlier analysis, we know that each is the intersection of a 4D-hypercubic face 
with C2, 5. Picking a 4D-hypercubic face means to fix one of the five coordinates and let the other 
four be free. Furthermore, we must set the fixed coordinate to +1, or else we have a tetrahedral 
face. So the two octahedral faces are specified by a choice of two coordinates, which must both 
equal +1. The vertices common to both octahedrons have +1 on these two coordinates. The 
remaining three coordinates have two -1s and one +1, forming the three vertices of a shared 
triangular face. Similar reasoning applies to the other pairings to show that every pair of these 
five 3D faces that meet at a common vertex share a triangular face, except for the two tetrahedra. 
In fact, any two tetrahedral faces intersect in only a vertex, but tetrahedra and octahedra always 
share a single triangular face, as do any pair of octahedra (see the cover).2 
 
Imagine: we have five regular tetrahedra in 4D space, every pair touching at a vertex, the 10 
points of contact being all the vertices of C2, 5. If we restrict our imagination to 3D, such a 
configuration of five tetrahedra appears impossible. How can we imagine such a structure? 
 

There’s an analog of this structure of five tetrahedra in C2, 4, the regular 
octahedron, whose faces consist of four triangles strictly congruent to C1, 3 and 
four strictly congruent to C2, 3. The four triangles strictly congruent to C1, 3 form 
the analogous structure. Here, four equilateral triangles touch pairwise at a vertex, 
and the six points of contact among them form the vertices of the octahedron. See 
the figure at left, where the four equilateral triangles are colored. 

 
If a creature confined to the plane contemplated such a configuration of triangles, 
that creature would probably think it impossible. The creature would be able to 
place three triangles with each pair sharing a vertex, as shown at right, but would 
have a hard time imagining placing a fourth triangle, of the same size, so that it 
touches these three at their “free” vertices. What the flat creature is missing is the 

 
2 C2, 5 is also known as a rectified 5-cell. 
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ability to imagine in 3D, where the three triangles can hinge around the edges of the central hole, 
rotating until their three free vertices form the vertices of that fourth equilateral triangle. 
 
What we, as 3D creatures, might imagine, then, is to start by placing four identical regular 
tetrahedra onto the four faces of a regular tetrahedral “hole,” something we can actually do in 
real life. Each tetrahedron touches the other three and has a fourth “free” vertex. In this 
pyramidal configuration, those four free vertices form a regular tetrahedron, but one that is 
bigger than the others. Then, imagine that these four tetrahedra hinge around the triangular faces 
of the hole into the fourth dimension, bringing their free vertices closer until those free vertices 
form a tetrahedron congruent to the original four. In 4D, you can rotate around planes! 
 
Combinatorics of C3, 6 

 
Let’s briefly visit the 5D object C3, 6. Without my explaining, can you verify the following facts? 
 
According to our analysis, faces of C3, 6 are itself, the C2, 5 and C3, 5 shapes we just studied 
(which are congruent), the regular tetrahedra C1, 4 and C3, 4, the regular octahedron C2, 4, the 
equilateral triangles C1, 3 and C2, 3, congruent edges C1, 2, and vertices. 
 
Using our counting formula, we find that there are: 
 

6C5 ∙ 1C1 + 6C5 ∙ 1C0 = 12 faces congruent to C2, 5 

6C4 ∙ 2C2 + 6C4 ∙ 2C0 = 30 regular tetrahedral faces 

6C4 ∙ 2C1 = 30 regular octahedral faces 

6C3 ∙ 3C2 + 6C3 ∙ 3C1 = 120 equilateral triangular faces 

6C2 ∙ 4C2 = 90 edges 
and 6C3 = 20 vertices. 

 
Every 4D face is attached to five other 4D faces along a tetrahedron and five along an 
octahedron. Every 4D face is on the opposite side of C3, 6 from another 4D face, with which it 
shares no vertices. More precisely, two 4D faces that are both strictly congruent to C2, 5 or to C3, 5 
intersect in a tetrahedron, whereas the intersection of a 4D face strictly congruent to C2, 5 with 
one strictly congruent to C3, 5 is either an octahedron or empty. (And so each 4D face is joined by 
a tetrahedron to the other five faces it is strictly congruent to, is joined by an octahedron to five 
of the six faces it is not strictly congruent to, and is opposite the sixth of those faces.) 
 
Every vertex has nine edges emanating from it and is a vertex of 18 triangles, nine octahedral 
faces, six tetrahedral faces, and six faces congruent to C2, 5, of which half are strictly congruent 
to C2, 5 and half to C3, 5. 
 
Every edge is an edge of four triangular faces, four octahedral faces, two tetrahedral faces, and 
four faces congruent to C2, 5. 
 
Every triangular face is a face of one tetrahedral face, two octahedral faces, and three faces 
congruent to C2, 5. 
 
5D creatures must regard C3, 6 as one of the most beautiful objects to behold!3

 

 
3 C3, 6 is also known as a birectified 5-simplex or dodecateron. 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 37 - Meet 1 
September 11, 2025 

Mentors: Elisabeth Bullock, Clarise Han, Layla Jarrahy, 
Minerva Johar, Shauna Kwag, Yaqi Li, Maya Robinson, 
Ella Wilson, Dora Woodruff 

We welcome all new and returning members and mentors to the start of our 19th year of Girls’ 
Angle! 
 Tournament design offers a wide array of math problems. Suppose you have to design a 
fencing tournament with 10 competitors. You want every competitor to play every other 
competitor at least once and you organize the event into rounds. In each round, up to 4 matches 
are played simultaneously. What’s the most efficient way to organize the matchups? What is the 
minimum number of rounds needed to meet all the requirements of the event? Can you 
generalize your results to N competitors where each round has up to M matches occurring 
simultaneously? 
 Now suppose you add a twist: Suppose every competitor needs some rest time, so no 
competitor may be scheduled to play four matches in a row. How does this requirement affect 
your schedules? 
 

Session 37 - Meet 2 
September 18, 2025 

Mentors: Elisabeth Bullock, Elsa Frankel, Layla Jarrahy, 
Minerva Johar, Shauna Kwag, Hanna Mularczyk 

Sometimes, if you’re in the mood, plain old computation can be a lot of fun. Some members 
played around with finding fast ways to convert fractions to decimals. After converting several 
fractions to decimals, they noticed patterns that they could use to make their conversions even 
faster. For example, convert 17/99, 38/99, and 80/99 to decimals. Do you see a pattern? How 
much can you generalize this pattern? For example, after seeing the decimal expansions of 17/99, 
38/99, and 80/99, what do you think the decimal expansion of 500/999 is? Can you prove the 
patterns you see work? Can you use what you notice to quickly convert 50/111 to a decimal? 
How about 2/37? And what about 25/101? For each of these fractions, you might notice 
something that you can exploit to be able to write down the decimal expansions with hardly any 
computational work. 
 

Session 37 - Meet 3 
September 25, 2025 

Mentors: 
 

 

Elisabeth Bullock, Elsa Frankel, Clarise Han, 
Layla Jarrahy, Shauna Kwag, Yaqi Li, Hanna Mularczyk, 
Maya Robinson, Dora Woodruff 

Take the month, day, and year of your birth and put them into the top three squares of a 3 by 3 
grid. Can you fill in the 6 empty squares in this grid in such a way that the resulting array of 9 
numbers is a magic square? That is, all the rows, columns, and major diagonals have entries that 
add up to the same constant? 
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 For example, here’s an array where the top row represents the date of release of the 
electronic version of this Bulletin: 
 

10 31 25 

37 22 7 

19 13 34 

 
No matter what the three numbers are in the top row, is it always possible to complete the array 
to form a magic square? Will it ever happen that there are multiple ways to complete the array to 
form a magic square for a given triple of numbers in the top row? What happens if you place the 
given numbers across the middle row? Will all the numbers necessarily be whole numbers? 
 

Session 37 - Meet 4 
October 2, 2025 

Mentors: Elisabeth Bullock, Elsa Frankel, Clarise Han, 
Layla Jarrahy, Yaqi Li, Hanna Mularczyk, Dora Woodruff 

Take your favorite geometric shape. How would you define it? A proper definition would be a 
precise description of the shape such that every object of that shape fits the description, but no 
object that does not have that shape fits the description. How would you define circle, square, 
isosceles triangle, or cube? 
 Mathematics demands precision. Every object of study in mathematics has been given a 
precise definition (or, is in the process of being given one). Having precise definitions enables us 
to prove things about mathematical objects and enables mathematicians to find agreement on the 
properties of objects. If two mathematicians disagree on a property of a mathematical object, all 
they have to do to figure out who is correct is to prove which property is consistent with the 
definition of the object and which is not. (While this may be easier said than done, it is always 
the case that either an object satisfies a property, or it does not, or the property is not relevant to 
the object, or one can choose whether or not the object has the property.) 
 

Session 37 - Meet 5 
October 9, 2025 

Mentors: 
 
 
Visitor: 

Elisabeth Bullock, Clarise Han, Layla Jarrahy, 
Yaqi Li, Dora Woodruff 
 
Ila Fiete, MIT McGovern Institute 

Ila Fiete is a Professor of Brain and Cognitive Sciences at MIT’s McGovern Institute. She earned 
her bachelor’s degree from the University of Michigan and her PhD in physics from Harvard. 
 Some years ago, scientists reported on the existence of cells in the brain that periodically 
fired when mice walked about. Prof. Fiete felt that those cells must be a part of network of cells 
and she wanted to find that network and create a model for it. Her idea initiated a multi-year 
research program that led to much deeper understanding of how many animals create spatial 
representations and navigate the world. Her work involves machine learning, neuroscience, and 
coding theory. 
 She began by showing us some animal’s feats of navigation, such as the kangaroo rat 
navigating its complex network of tunnels or a type of ant in Morocco, Cataglyphis fortis, 
foraging for food. As the C. fortis searches for food, it traces out a seemingly random walk. But 
once it finds food, it heads straight back to its home. Interestingly, if the ant is put in a box and 
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lifted from the food to some other place, when released, the ant will travel along a straight-line 
path parallel to the path from food source to home. When it finds no home where home should 
be, it commences on a systematic outwardly spiraling search pattern to find home. 

When it comes to humans, navigation has been a great source of challenge that induced 
much innovation. Our modern Global Positioning System (GPS) required construction of rocket 
technology in order to place a large satellite system in orbit. For more on our efforts to conquer 
navigation, Prof. Fiete recommends Dava Sobel’s book, Longitude. 

Prof. Fiete then turned our attention to the brain, specifically, the hippocampus, which 
looks roughly like a sea horse (hence, its name). It is a well-studied part of the brain whose 
neural circuitry has largely been mapped out. Within the hippocampus, there are special cells 
called “place cells.” In a mouse, these cells fire when the mouse is in a specific absolute location 
in a region, and there are place cells that cover the entire region. Because these cells fire 
consistently whenever the mouse is in a particular location in the region, independent of how the 
mouse came to that location or whatever it is looking at in that moment, we deduce that the place 
cells are not informed by visual cues. In contrast, there are “head direction cells,” which fire 
when the head is looking in a particular compass direction. The physical proximity of these cells 
to each other corresponds to closeness in head direction, whereas with place cells, physically 
nearby place cells can respond to disparate locations in the region. 
 She also explained how there are cells that fire periodically as we walk in a fixed 
direction, but these cells fire with different periods. This enables them to have small periods, yet 
still inform us on how far we’ve gone for rather long distances via the Chinese Remainder 
Theorem.  
 

Session 37 - Meet 6 
October 16, 2025 

Mentors: Elisabeth Bullock, Elsa Frankel, Clarise Han, 
Layla Jarrahy, Shauna Kwag, Yaqi Li, Hanna Mularczyk, 
Maya Robinson, Ella Wilson, Dora Woodruff 

 
Take your favorite mathematical idea. How would you illustrate it to convey its mathematical 
content? If you come up with something that you’re proud of, consider sharing it with us! 
 

Session 37 - Meet 7 
October 23, 2025 

Mentors: 
 

Elisabeth Bullock, Elsa Frankel, Layla Jarrahy, 
Yaqi Li, Hanna Mularczyk, Maya Robinson 

And if you come up with something visual that works better as a 3D object, consider realizing it 
with a 3D printer. If you don’t know how to make a 3D printer print what you desire, teach 
yourself a language for describing objects to a 3D printer, such as OpenSCAD. 
 

Session 37 - Meet 8 
October 30, 2025 

Mentors: 
 

Elisabeth Bullock, Elsa Frankel, Clarise Han, 
Layla Jarrahy, Shauna Kwag, Yaqi Li, Hanna Mularczyk, 
Maya Robinson, Dora Woodruff 
 

Can you think of a way to produce random positive integers in such a way that every positive 
integer has a nonzero probability of arising? In your scheme, what is the probability that n 
arises? What properties would any such method be required to adhere to? For example, if p(n) is 
the probability that the positive integer n arises, then we would require that the sum of p(n) over 
all positive integers be equal to 1. Are there any other properties that p(n) must obey?  
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Calendar 

 
Session 37: (all dates in 2025) 
 

September 11 Start of the thirty-seventh session! 
 19  
 25  
October 2  
 9 Ila Fiete, MIT 
 16  
 23  
 30  
November 6  
 13  
 20  
 27 Thanksgiving - No meet 
December 4  

 
Session 38: (all dates in 2026) 
 

January 29 Start of the thirty-eighth session! 
February 5  
 12  
 19  
 26 No meet 
March 5  
 12  
 19  
 26 No meet 
April 2  
 9  
 16  
 23 No meet 
 30  
May 7  

 
Girls’ Angle has run nearly 200 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax-free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 

The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 

What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
 



 

© Copyright 2025 Girls’ Angle.  All Rights Reserved.                                                                32 

Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high-level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax-free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


