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From the Founder
If you dislike math, you might be able to build a connection through
something you do enjoy. In almost all we do that we care about, problems
arise. If the problem can be thought about abstractly and logically, you’ve
got yourself a gateway into mathematics. -Ken Fan, President and Founder
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At the time, my university was around
45 years old, and they never had a

An Interview with

female first class student before.

Fatima Akinola,
Part 1

Fatima Akinola is a graduate student in
mathematics at the University of Florida.
Her doctoral advisor is Andrew Vince.
Fatima was raised in Nigeria and received
her Bachelor of Science in Mathematics
from Usmanu Danfodiyo University. She
earned a master’s degree in mathematics
from Marshall University where she worked
with Michael Schroeder.

This interview was conducted be Girls’
Angle mentor and Wellesley College
undergraduate Elsa Frankel.

Elsa: First of all, I’d like to invite you to
introduce yourself and tell us how you got
interested in math.

Fatima: Hello! My name is Fatima Akinola,
and I am a fifth-year PhD student of
mathematics at the University of Florida.
I’m originally from Nigeria, and when I was
in my undergrad, I wanted to study
medicine, but that just did not pan out,
because I wasn’t given admission for it.

I was given admission to study math. I had
been very good at math from a young age. I
attended competitions. I represented my
state in a nationwide competition. So, math
just felt natural, and I didn’t want to stay
home, so I went ahead to study math in
college.

But then I became particularly interested in
math in my third and fourth years of college
when I began studying real analysis,
complex analysis, and numerical analysis. |
was like, “Yeah, this is fun.”

But my dream, actually, was to become an
engineer. I thought, after studying math, I’'m

just going to go do a master’s in engineering
or something. I guess I didn’t know how the
world works. [Laughter] But then I
graduated with a first class in math, and |
pursuing a graduate degree seemed like the
next best thing. I applied to schools and
ended up moving to the United States.

Elsa: That actually answers my next
question perfectly, because I was wondering
how you chose to pursue graduate school.
I’m curious, though, because you wanted to
do engineering, but chose to get a master’s
degree in math at Marshall University. What
led you to pursue math instead of
engineering in the end?

Fatima: Graduating first class in math made
pursuing math feel natural. And I did enjoy
math, and it seemed that I was really good at
it. I think something else that also pushed
me to pursue a graduate degree in math has
to do with the situation in the part of the
country that I was living in. I was born and
raised in northern Nigeria, and we don’t get
to see a lot of women in math.

Just finishing with a first class, I kind of
broke history in my country. At the time, my
university was around 45 years old, and they
never had a female first class student before.
I think that made me want to prove that a
woman in math is not an alien. [Laughter]
It’s something that is really possible.

And so, when I pursued my graduate degree,
and I came here, I did a master’s at Marshall
University before moving here to the
University of Florida.

When I got to Marshall, of course the goal
was a master’s degree, but I luckily found an
amazing advisor who I wanted to work with,
and we did.
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Dear Reader,

We're committed to producing quality math educational
content and make every effort to provide this content to you
for free.

We are also committed to surviving as a nonprofit!

For this issue, those who do not subscribe to the print
version will be missing out on a portion of the content. We
hope that you consider the value of such content and decide
that the efforts required to produce such content are worthy of
your financial support.

We know that mathematical interest and talent is
unrelated to economic status, which is why we provide so
much content for free. But we hope that those of you who are
comfortable financially will help us to continue in our efforts.

So, please consider subscribing to the Bulletin. Thanks
to our sponsors, subscriptions cost $36/year. With a
subscription, you have also gained access to our mentors via
email and the ability to influence content in this Bulletin. Visit
www.girlsangle.org/page/bulletin_sponsor.html for more
information.

Thank you and best wishes,

Ken Fan

President and Founder

Girls’ Angle: A Math Club for Girls
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The American Mathematical Society is generously offering a 25% discount on the two book set
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin. To redeem, go to
http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout.
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Taylor Series for Tangent, Part 2

by Ken Fan | edited by Jennifer Sidney

Last time,! Emily and Jasmine decided to find the Taylor series expansion for tan(x). To do that,
they began computing higher and higher order derivatives of tan(x), with respect to x. They
found that the nth derivative of tan(x), with respect to x, has the form

p,(2sin(x))
cos"" (x)

b

where p,(x) is a polynomial of degree n — 1 with lead coefficient 1. Furthermore, the polynomials
pn(x) are defined recursively by pi(x) = 1 and

(n+Dxp,(x)+(@4—x*)p' . (x)
2 7

Pn+ 1(X) =

for n > 1, where p',(x) denotes the derivative of p,(x) with respect to x. The first few polynomials
pn(x) are

Pn(x)
1

X
24+ x°

8x + x°
16 + 22x% + x*
136x + 52x° + X°
272 + 720x% + 114x* + x°
3968x + 3072x> + 240x° + x”
7936 + 34304x% + 11616x* + 494x5 + x8

O |0 ||| N[~ WD~ ] S

Let’s rejoin Emily and Jasmine’s conversation.
Emily: What else can we say about these polynomials?

Jasmine: It looks like the polynomials alternate between being even and odd functions because
the powers of x alternate between being all even or all odd.

Emily: Yes, that’s reflected in the recurrence relation. If p,(x) is an odd function, then xp,(x) will
only have even powers of x, and (4 — x*)p’»(x) will also only have even powers of x since p’x(x)
will only have even powers of x. A similar argument applies if p,(x) is an even function.

' See Volume 18, Number 4 of this Bulletin.



Jasmine: That proves it! Actually, I think this also follows from tan(x) being an odd function.

Emily: Oh, I see what you’re saying. The derivative of an odd function is even, and the
p, (2sin(x))

cos"" (x)

derivative of an even function is odd, so will alternate between odd and even.

p, (2sin(x))

n+l

Jasmine: Exactly. And cos(x) is even, so
cos"" (x)

is even if and only if p,(2sin(x)) is even,

and it’s odd if and only if p,(2sin(x)) is odd. And since 2sin(x) is odd, p,(2sin(x)) is even if and
only if p,(x) is even, and it’s odd if and only if p.(x) is odd.

Emily: I love it when you can see something conceptually!
Jasmine: Do you think all of these polynomials have integer coefficients?
Emily: It does seem that way. Well, in the recurrence relation, the computation of the numerator
only involves operations that will result in integer values, so all we have to check is that the
numerator is a polynomial whose coefficients are all even.
Jasmine: Okay. So suppose that p,(x) = co + c1x + c2x*> + ... + ca—1x"~ 1. We know that either the
even or the odd coefficients will all be zero, but we don’t know which, so I’'m just going to leave
them all as variables.
Emily: Okay.
Jasmine: Then p'u(x) = 1 + 2cox + 3cax?> + deax® + ... + (n— Den—1X" 2
Emily: Yes.
Jasmine: The coefficient of x* in the numerator, (n + 1)xpa(x) + (4 — x*)p'n(x), would then be

(n + I)Ck71 + 4(k + 1)Ck+1 - (k— 1)Ck71,
which can be simplified to

n—k+2)ck-1+4k+ Dck+1.

Emily: The second term, 4(k + 1)ck+ 1, will always be even, so we have to show that the first
term is always even.

Jasmine: It doesn’t look like it has to be even...
Emily: Maybe this is where we have to use the even/odd nature of these polynomials. If » is odd,

then px(x) is an even function, so cx = 0 for all odd k. Therefore, (n — k + 2)cx -1 is nonzero only
when k is odd, and if &k is odd, then n — k + 2 is even. So that works!



Jasmine: Nice! And if n is even, then p,(x) is an odd function, so cx = 0 for all even k; this means
that (n — k + 2)ck -1 is nonzero only when £ is even, and if k is even, then n — k + 2 is also even!
The polynomials do have integer coefficients!

Emily: Since k < n, our formula for the coefficients also shows that the coefficient of x* in px(x)
is, in fact, positive for odd k when p, is odd, or for even k when p, is even.

Jasmine: I think that means that when p,(x) is an even function, it has no real roots, and if it is an
odd function, then its only real root is x = 0. This follows from symmetry, and also because as
soon as x > 0, then p,(x) > 0.

Emily: In fact, if we fix k, then ci, , strictly increases for k > n — 1, S0 pn +2(x) > pa(x) for all x > 0.
These properties of p,(x) are amusing; but to compute the Taylor series for tan(x), we only need
the values of the derivatives of tan(x) at x = 0, which means we only need to know p,(0).
Jasmine: Good point. We know p,(0) = 0 for even n, so what is p,(0) for odd n?

Emily: Oh dear.

Jasmine: What’s the matter?

Emily: The recursion formula involves the first derivative of p,(x), with respect to x. That means
that the constant term of p,(x) will have contributions from the linear term of p, - 1(x), which will
have contributions from the quadratic term of p,-2(x), etc. So it seems that to compute p,(0) with
our recurrence relation, we still have to compute all the coefficients of p,(x).

Jasmine: No wonder they don’t derive the Taylor series of tan(x) in school!

Emily: Let’s let ¢k », be the coefficient of x* in p,(x). Then our coefficient recursion relation is

—k+2
Clon+1= nTCk—l,n + 2(k+ 1)ck+1,n,

where we’ll interpret c.1,, as 0.

Jasmine: It’s kind of like a more complex version of Pascal’s triangle. Let’s make a diagram
showing how the coefficients of p,(x) feed into the coefficients of p, + 1(x).

Emily: Great idea!

Emily and Jasmine create a table of the coefficients of the polynomials p,(x). They write the
coefficients of the polynomial in black. In blue over each arrow, they write the factor by which
the coefficient at the base of the arrow contributes to the coefficient that the arrow points to. See
the diagram at the top of the next page.



16 0 22 0 1

O 3968 0 3072 0 240 O 1
2 4 8 3 10 2 14 1

7936 0 34304 0 11616 0 494 O 1

The coefficients of the polynomials p,(x) arranged in a triangular array.

The coefficients of p,(x) are written in the nth row of black numbers in order of lowest degree to
highest. For example, the 34304 in the bottom row is the coefficient of x* in po(x), and the
recursion formula tells us that 34304 = 4(3968) + 6(3072).

Jasmine: I see. The arrows that point southeast are arranged in diagonals (that are infinitely
long), and those arrows are weighted by the numbers 1, 2, 3, etc., counting from the uppermost
diagonal and going down. On the other hand, the arrows that point southwest are arranged in
diagonals (that are finite), and the arrows on each such diagonal are weighted by the consecutive
even integers starting from the lowest arrow on the diagonal and going up and to the right.

Emily: The numbers we need to get the Taylor series for tangent are in the first column: 1, 0, 2,
0, 16, 0, 272, 0, 7936, ...
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Jasmine: Yes. That tells us that the Taylor series for tangent begins

2040005 22 P00 ekl 2 T 02

—x'+ —x
3! 5! 7! 9! 3 15 315 2835
Emily: It’s curious that all the entries below the diagonal of 1’s are even.

Jasmine: Yes, that’s true because the 1’s feed to the number down and to the left by a factor of 2,
so all the entries in the diagonal just below the 1’s will be even. And then the recursion formula
shows that all the entries below that diagonal will also be even.

Emily: Wait a second... the entries in the second diagonal below the 1’s all seem to be multiples
of 4... and the entries in the third diagonal below the 1’s are all multiples of 8...

Jasmine: Are you thinking that all the entries in the kth diagonal below the 1’s are going to be
multiples of 257

Emily: Maybe!

Jasmine: So if we set dk. , to be cx o/2" ~** 1

integers?

, you’re saying that the di, , will all be nonnegative

Emily: Yes. Let’s substitute 2" ~** Y24,  for ¢ » in the recurrence relation for the coefficients.
Hopefully, from that relation we’ll be able to see that the di, » are nonnegative integers.

Jasmine: Good idea! That substitution gives us

n—-k+2

Qi+ l-k+DR2g =k=D* D2 4 2k + 12—k D2

where, just as with the cx, », we assume that d.i,, = 0 for all n. If we divide throughout by
2(n +1-k+1)2 we get

—k+2
dins1= ank—l,n + (k+ Ddi+1.n.

That’s almost the same as the recurrence relation for the ¢, »! The only difference would be to
halve all the entries on the flow arrows that point to the southwest in our “flow diagram” for the
coefficients cx, ». Since do, 1 = 1, that does mean that all the dy, , are nonnegative integers!

Emily and Jasmine make a “flow diagram” for the di, .. See the figure at the top of the next page.

Emily: Unfortunately, I don’t see how we can compute the di, » without using the recurrence
relation. All this observation does, it seems, is to make the entries smaller, although some of the
numbers have relatively large prime factors. This makes me think that unlike the entries in
Pascal’s triangle, there isn’t going to be a simple expression for the di, » as a product.

11



34 0 180 O 57 0 1

0O 496 0 768 0 120 O 1

496 0 4288 0 2904 0 247 O 1

Jasmine: The sums of the entries in each row of Pascal’s triangle give the powers of 2. I wonder
if the sums of the entries in each row of our di, , triangle yield some simple sequence.

Emily: Let’s check! I get row sums of 1, 1, 2, 5, 16, 61, 272, 1385, 7936, ...

Jasmine: Hold on! That’s strange. For the odd rows, the sums are the nonzero entries in the first
column of the triangle of cx, , values: 1, 2, 16, 272, 7936, ...!

Emily: Whoa, that can’t be a coincidence! What’s going on here?

To be continued...
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Anti-magic Squares'
by Robert Donley?
edited by Amanda Galtman

For this installment, we consider a new direction based on semi-magic squares. In the preceding
series on graph theory, we saw that semi-magic squares with 0/1 entries become difficult as their
size grows. For the case of size 3, the situation is tractable, and we introduce the anti-magic
square as a variation with interesting counting properties.

To begin, we review semi-magic squares of size 3; much of this material appears in the
preceding installments, but no graph theory will be needed for this new series. Our goal is to find
a simpler model for such squares and to derive counting formulas based on line sums. It will be
helpful to recall the binomial series formula and how generating functions work (“Fibonacci
Numbers and Multiset Counting,” Volume 15, Number 6, and “Generating Functions for
Compositions,” Volume 16, Number 4).

Definition: A semi-magic square of size n with line sum L is a square matrix of size n with
nonnegative integer entries such that the sum along each row or column equals L.

Example: A square matrix with all entries equal to zero is semi-magic with L = 0.
We can also directly identify all semi-magic squares with line sum L = 1.

Definition: A permutation matrix is a square matrix having exactly one 1 in each row and
column. All other entries vanish.

Exercise: Prove that a semi-magic square with line sum L = 1 must be a permutation matrix.

Example: The square matrix J,, of size n with all entries equal to 1 is a semi-magic square with
line sum L = n.

Exercise: Prove that if M and N are semi-magic squares with line sums L and L', respectively,
then M + N is a semi-magic square with line sum L + L'.

Thus, the sum of any L permutation matrices is a semi-magic square with line sum L. If M is a
semi-magic square with line sum L, then kM, the sum of k copies of M, is a semi-magic square

with line sum kL.

Example: Consider the six permutation matrices of size 3:

1 00 0 01 010
Pi={0 1 O0,P2={1 0 O,P35=|0 0 1],
0 01 010 1 00

! This installment is 23" in a series that began in Volume 15, Number 3. This installment is the first of a new
subseries.
2 This content is supported in part by a grant from MathWorks.
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1 00 010 0 01
Py={0 0 1(,Ps=|1 0 Of,andPs={0 1 O
010 0 01 1 00

Note that, to obtain the latter three squares, we switch the last two columns of the first three
squares. We see that

P +P2+P3=P4+P5+P6=J3,
and that J3 has line sum L = 3.
The converse of the statement about permutation matrices is true.

Theorem (Birkhoff-von Neumann): Every semi-magic square with line sum L is a sum of L
permutation matrices.

Before we prove this for size 3, we note that if M is a semi-magic square with line sum L, then
permuting any rows or columns of M results in a semi-magic square with line sum L. A similar
statement holds for the transpose of M.

Proof of theorem for size 3. The proof will require parts that we leave to the reader as exercises.
Fix a positive L. Suppose the statement is true for all semi-magic squares with line sum less than
L. If every entry of M is positive, then we can subtract the matrix J3 from M to obtain a semi-
magic square M’ with line sum L — 3, which in turn can be written as a sum of L — 3 permutation
matrices. Thus

M=M"+Pi+ P+ Ps3
is a sum of L permutation matrices. Now show the following:

Exercise: Let M be a semi-magic square of size 3 with positive line sum L. Prove that there
exists some permutation of the rows and columns of M such that the new diagonal entries are all
positive.

Definition: We call two permutation matrices P and Q deranged if their sum has entries with
value at most 1. That is, such matrices share no entries of 1 in the same position.

Exercise: In the previous exercise, suppose M has at least one vanishing entry. Prove that we can
obtain a new semi-magic square M with no vanishing entries by adding two deranged
permutation matrices to M.

To finish the proof, if M has some vanishing entries, then, for some deranged permutation
matrices P and Q, M + P + Q has no vanishing entries and line sum L + 2. Now M' defined as
M + P + Q — J; has line sum L — 1 and is a sum of L — 1 permutation matrices. But

P'=J;— P — Q is a permutation matrix, so M = M'+ P'is a sum of L permutation matrices. O

By the Birkhoff-Von Neumann theorem, any semi-magic square M of size 3 may be expressed in
the form

14



M = aiP1 + a> P> + azP3 + asP4 + asPs + a6P6,

where each a; > 0. An important advantage of this representation is that, as long as we remember
the ordering of the permutation matrices, we can simply describe M as an ordered sextuple
a = (a1, a2, a3, as, as, as). Note that the line sum of M is the sum of the entries of a.

It is advantageous to configure our notation by arranging the sextuple in a ar | a | as
rectangle with two rows, as seen on the right. as | as | as
One disadvantage is that this representation need not be unique;

. . 1|11 0100
that is, there may be many ways to describe M as a rectangle. =
For instance, J; is described by both rectangles at right: 0/]0]0 1|11

Exercise: Suppose the sextuple a = (a1, a2, a3, as, as, as) corresponds to M. Prove that
a':(a1+ 1,a2+ 1,a3+1,a4—1,a5—1,a6—1)
also corresponds to M when all entries of a’ are nonnegative.

This shifting of 1s is the only defect in uniqueness, and we visualize this defect in the rectangle
notation as shifting triples of 1s between rows. Suppose M is represented by both

a= (a1, az, az, as, as, as) and a’ = (a'1, a'», a'3, a's, a's, a's).
Then,
M=aiP1+... +asPs=a"1P1+ ...+ d'sPs,
or
(a1 —a'1)P1+ ...+ (as—a's)Ps = 0.

Exercise: Suppose b1P1 + ... + bePs = 0. Prove that by = by = b3 = -bs = -bs = -be by rewriting
the equation as matrices of size 3.

Exercise: From the previous exercise, prove that the only way two sextuples can represent the
same M is if they differ by one or more shiftings of 1s as above.

To summarize the preceding discussion, we highlight three key points:

 aanda’'=(ai+k,ax+k,az+k, as—k, as — k, as — k) represent the same M for all kK when
a’ has all entries nonnegative,

e two sextuples corresponding to M must be of this form, and

® we obtain a preferred representative by upshifting triples of 1s until one of a4, as, or ae
vanishes.
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It follows immediately that M has a unique representation when one of ai, a2, or a3 vanishes in
the preferred representation. Such squares M have at least one vanishing entry, and the
corresponding rectangles have at least one vanishing entry in each row.

Exercise: Express the following semi-magic squares as sextuples and rectangles. List all
possible rectangles when not unique.

2 32 321 4 2 2
Mi=|11 5{,Mx=(2 2 2|, M3=|2 3 3]|.
4 30 1 23 2 33
Exercise: Find a column operation on M that interchanges the rows of a rectangle. How does
transpose on M affect a rectangle?
Exercise: List all 21 semi-magic squares of size 3 and line sum L = 2. Partition these squares

into subsets by the number of entries with value 2, and find the corresponding sextuples. For
each fixed subset, how are the sextuples of the squares in that subset related?

In the previous exercise, there are three 1(1]0 110]0 21010

representative rectangles: ololo 110]0 0/010

Exercise: Reconcile the count of 21 using the formula: 21 =3 +3)+ (3x3) + 6.

Exercise: Repeat the previous analysis for M with line sum L = 3. In this case, the only square
with a non-unique representative is J3.

Exercise: Repeat the previous analysis for M with line sum L = 4.

As usual, we denote the binomial coefficient “n choose k£ by (Z), and, as a convention, we

suppose this coefficient vanishes if k is negative or greater than n.

Theorem: Let p(L) be the number of semi-magic squares of size 3 with line sum L. Then

L+5) (L+2) (L+2)L+D(I*+3L+4)
p(L) = - = :
5 5 8
Proof. Recall that the number of ways to put L balls into n boxes is given by the binomial
L+n-1

coefficient ( : ) . If we consider the preferred representation of M as a rectangle with

vanishing of one of the lower entries, then p(L) is the number of ways to put L balls into six
boxes, except that we discard any sextuple in which all lower entries are positive. To construct a
rectangle of the latter type, we pre-assign one ball to each of these entries and then place L — 3
balls into the six boxes in any manner. The first formula now follows. For the second formula,
we expand the binomial coefficients into factorials and simplify. o

Exercise: Prove the second formula for p(L).
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Exercise: Use the second formula to calculate p(L) for 0 < L < 6. Search for this sequence in the
Online Encyclopedia of Integer Sequences (oeis.org).

Next, we find the generating function associated to p(L), which is the formal power series
F(x) = p(0) + p(1)x + p2)x% + p(3)x° + . . ..

Corollary: Let p(L) be the number of semi-magic squares of size 3 with line sum L. Then the
generating function for p(L) is given by

1-x° 1+ x+x°
F = =
= T i

Proof. The corollary follows from the formula for the binomial series. O

From the second formula in the corollary, we obtain another formula for p(L), which again
follows from the formula for the binomial series.

Corollary: Let p(L) be the number of semi-magic squares of size 3 with line sum L. Then

- (4317

Exercise: Prove the third formula using the binomial series.

Exercise: Use the third formula to calculate p(L) for 0 <L < 6. Then adapt the proof of the
theorem to give a counting argument for this formula. Instead of discarding cases without zeros,
model your argument on how to place zeros in the last three entries.

Let’s summarize what we have so far:

e a preferred representation for semi-magic squares of size 3 as sextuples or rectangles, and
¢ several formulas for the number of semi-magic squares of size 3 with line sum L.

We might hope that our arguments extend to semi-magic squares of size 4, but the difficulties
with semi-magic squares of size 4 and larger have been noted and explored in the series
preceding this installment.

Exercise: Write the matrix D = as a sum of permutation matrices in four distinct

—_—— O O

0
0
1
1

SO ==
OO =

ways.

To find a set of matrices that extends the sextuple or rectangle models, we instead consider anti-
magic squares, which we now define.

17



Definition: Fix a positive integer n. Let R; be the square matrix of size n for which the entries in
the ith row all equal 1 and all other entries vanish. Likewise, define C; in a similar manner, but
for the ith column.

Definition: The set of anti-magic squares of size n consists of all sums of matrices of type R; and
C:. That is, an anti-magic square M is a square matrix of the form

M=rRi+...+rmRi+cCi+...+cuCy,
with integers r;, ¢; > 0. We define the index of M to be the sum

iMy=r+...+m+c1+...+cn

Example: The anti-magic squares of size 3 are sums of the matrices

1 00 010 0 01
Ri=|10 0|,R=|{01O0|,R3=({0 0 1],
1 00 010 0 01
1 11 00 00O
Ci=|0 0 0,G=|11 1|,Gs=]0 00
00O 00 1 11

Exercise: Prove that the index of M is the sum of the diagonal entries of M.

Exercise: How many anti-magic squares have index 1? Index 2 through n?

We see that the set of anti-magic squares is preserved under permutations of rows and columns,
and transpose interchanges R; and Ci. Of course, the index is unchanged under these operations.
Furthermore, most of the counting results for semi-magic squares of size 3 carry over as a

consequence of the relation

R1+...+Rn:C1+...+Cn:Jn.

Exercise: Repeat the sequence of exercises for semi-magic squares of size

3 to prove that every anti-magic square of size 7 is uniquely represented by | ! e 3
a rectangle with width n and nonnegative entries such that at least one c; 1 con 3
vanishes.

The following exercise appears as problem 53(c) in Chapter 4 of Richard Stanley’s book
Enumerative Combinatorics, Volume 1.3

Exercise: Prove that the number of anti-magic squares of size n and index L is given by the
formula

3 Stanley, R.P., 2011. Enumerative combinatorics, Volume 1, 2™ edition. Cambridge studies in advanced
mathematics.
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v [(L+2n—1 L+n-1
p(L)‘( 2n—1 j ( 2n—1 j
Exercise: Find a generating function for p'(L) and a second formula for p'(L) based on the third

formula for p(L). Find the first 10 terms when n =2 and n = 4.

We finish with a tabular method to calculate p'(L). Recall the geometric series formula
P(x) = % =l4+x+X24+5+.. ..
—X

If G(x) = so + s1x + sox> + . . . is the generating function for the sequence sy, then P(x)G(x) is the
generating function for the sequence # of partial sums of s, where

tk=so+s81+...+ Sk

When 7 = 3, the numerator of p(L) is G(X) = 1 + x + x*, for which we record the coefficients with
increasing degree r in column O of the table below. Each subsequent column s records the entries
of P(x)’G(x). To implement the partial sum operation, we add the entries in a column down to a
given position and place the sum in the cell to the right.

Alternatively, we add an entry in a given position to the entry one down and to the left, and we
place the sum in the position below the original position. For instance, in column 3, 19 + 12 =31.
Column 5 gives the list of values for p(L).

[\
[u—

—_ (@]

2 1 3 6 10 15

3 0 0| 3 | 9 [[19] 34

=
(=]
(O8]
(S
[\
H
(S
[
()}
(S
[\®]

5 0 3 15 46 111 |23

6 0 3 18 64 | 175 || 406

Exercise: Explain why the three-term partial sum calculation works. Then use the tabular
method to calculate the first 10 values of p'(L) forn =2, 4, 5.
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Hypercube Sections: Combinatorics

by Addie Summer | edited by Amanda Galtman

Let n be a positive integer greater than 1, and let k be
an integer such that 0 < k < n.

Last time,! we found that the hypercube cross section
Ck.» has 2n (n — 2)-dimensional faces, unless k = 1 or
k =n — 1. In those cases, Ck,» is an (n — 1)-dimensional
simplex, which has n (n — 2)-dimensional faces.

We also found that Cy , has:

n!

an:—'
k\(n—k)!

vertices,

n!

k- n—k—1)1 "

dges,

nl(n—-2)
6(k—1)!(n—k—-1)!

triangular faces.

Technically, we derived the formula for the number of
faces under the assumption that 1 < k <n — 1. But note
that when k = 1 or k = n — 1, the object Cy, , is an

(n — 1)-dimensional simplex, which has ,C3 triangular
faces (since any three of its n vertices form a triangular
face). The last formula does, indeed, equal ,C3 when
k=lork=n-1.

Let’s press on!
Instead of counting 3D faces of Ci,», I feel like tackling

the general case. We’ve seen that the geometric shapes
appearing in our geometric version of Pascal’s triangle

Here, Addie takes the n-dimensional
hypercube to be the points in n-dimensional
space with coordinates (xi, x2, x3, ..., Xn),
where -1 <x;<1fork=1,2,3,...,n. Its
vertices are the points each of whose
coordinates is either 1 or -1.

For each integer k from O to n, let V; , be the
set of vertices that have exactly k
coordinates equal to -1, and let Cy, , be the
convex hull of the vertices in Vi ,.. If it is
clear what n is, Addie might omit the n and
simply write Vi and Ci.

LA

This is the geometric version of Pascal’s
triangle we found last time. Each shape is
the “prism” formed by using the two
shapes directly above as bases. The nth
row gives snapshots of cross sections of
the n-dimensional hypercube by an (n —
1)-dimensional hyperplane passing
through. The number of vertices of each
shape is given by Pascal’s triangle.

in the rows above the nth are the possible faces of Cy, .. So let’s ask: how many faces of Cy, , are
congruent to Cj, p, where p < n and 0 <j < p? (The latter inequality ensures that Cj  is a (p — 1)-

dimensional object and not a point.)

We have to be mindful that C;,, is congruent to C,_}, ,. Please keep this symmetry of Pascal’s

triangle in mind in the following discussion.

As we saw, we can find all the (p — 1)-dimensional faces of Ci, » by looking at its intersection
with various p-dimensional faces of the hypercube. We can obtain all these p-dimensional faces
of the hypercube by first picking a set I of p indices (between 1 and n, inclusive). Then, for i not

! “Hypercube Sections: Pascal Revisited,” Volume 18, Number 4.
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in 1, we set each x; independently to 1 or -1. For i in /, we let x; range freely over the interval
[-1, 1]. We called the indices in I the “free” indices. Let’s call the indices outside [ the “fixed”
indices. We also found it convenient to define S to be the sum of x; over the fixed indices i and
saw that S has the same parity as n — p.

The points of this p-dimensional hypercube that intersect the cross sectioning hyperplane
Xit+x+x3+...+x,=n-2k

(that “slices out” Ck, ») are those for which Z x, =n—2k—S§ . Usually, there are two ways for
iel

these points to correspond to a face congruent to Cj, ,, because of the “Pascal symmetry”

mentioned earlier (i.e., that C; , is congruent to C,_;, p). If j # p — j, 1.e., p # 2j, then one way is

for n — 2k — S = p — 2j, and the other way is for n — 2k — § = 2j — p. If p =2j, then there is only

one way; these points must correspond to a face congruent to Cj, 2;.

To avoid confusion, let’s count only the ways that correspond to n — 2k — § = p — 2j or, after
rearranging, S = n — p — 2(k — j). Later, we’ll account for the “other way” by combining the result
with the formula obtained by substituting p — j for j, in case p # 2j. Let’s also say that a face is
strictly congruent to C; , if and only if that face is the cross section of a p-dimensional
hypercube facet exactly in this way, with S =n —p — 2(k — ).

Recall that § is the sum of the fixed coordinates x;. These coordinates are equal to +1 or -1, and
since there are n — p of these fixed coordinates, it must be that S| < n — p. Therefore, the
condition S = n — p — 2(k —j) implies

-m-p)<n-p+2(j-k)<n-p.

The first inequality is equivalent to p — j < n — k, and the last inequality is equivalent to j < k.
This makes sense because if a vertex of C, , is a vertex of a (p — 1)-dimensional face contained
in the p-dimensional hypercube with free indices /, then we need exactly j of these free indices to
correspond to coordinates set to -1. The remaining p — j free indices correspond to coordinates
set to +1. At the same time, a total of k of the vertex’s coordinates must be -1, while the
remaining n — k of them must be +1. This is possible only if k>jand n —k>p —j.

Let’s assume the inequalities k> j and n — k> p — j hold (and also that 0 < k <n and 0 <j < p).
Fix a vertex v in Ci, . We know that k of its coordinates are equal to -1 and n — k of its
coordinates are equal to +1.

How many faces have v as a vertex and are strictly congruent to C;,, with n — 2k — S =p — 2j?

There are as many as the number of ways to pick j of the k coordinates of v that are equal to -1
multiplied by the number of ways to pick p —j of the n — k coordinates of v that are equal to +1:

kCj - n-kCp—j.

If we interpret .Cp as 0 if b <0 or b > a, then this formula is valid for all 0 < k < n, so let’s agree
to do that!
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There are ,Cx vertices of Ci, », but if we add up «C; - »-«C, - over all vertices, we will count each
face strictly congruent to Cj,, (with n — 2k — § = p — 2j) a total of ,C; times. Therefore, the
number of faces strictly congruent to Cj,, with n —2k — S = p — 2j is equal to

GG

Jj n=k~p-j

C ”

p

Let’s see if we can simplify this expression.
an'ij'n—ka—j _ n! k! (n—k)! J{(p—))!
,C; ok m=k) ji k- D (p-DIn—k—p+ !  p!

n!
pltk—plin—k—p+j)!

Notice that p + (k—j) + (n — k— p + j) = n. That means that this expression corresponds to a
trinomial coefficient. Specifically, it is the coefficient of x”y* ~/z"~*~7*J in the expansion of
(x +y + 2)". Multiplying the numerator and denominator by (n — p)!, we can also express this as:

nl(n—p)!
plin=p)lk=pPn—k—-p+ !

=nCp " n—pCr—j.

I wonder if this expression can be interpreted in terms of the geometry. We’re finding the faces
that are strictly congruent to C;,, by intersecting C, , with p-dimensional hypercubes. So perhaps
the first factor, ,C), can be interpreted as choosing our p free coordinates /. Having chosen the
free coordinates, we then need to set each fixed coordinate to +1 or -1 in such a way that they
sum to S =n — p — 2(k —j). This means that of the n — p fixed coordinates, exactly k — j of them
must be set to -1...so that accounts for the second factor!

The product ,Cp * - pCk - 1s nonzero only if n > p and n — p > k — j. These are the same
inequalities that we found earlier for the corresponding p-dimensional hypercube face to contain
a (p — 1)-dimensional face of Cy, , that is strictly congruent to C;, !

Notice that ,Cp, - »-,Ck-; = 1 when n = p and j = k. This makes sense because it’s the number of
faces of Cy, » that are congruent to Ci, .. There’s only one, namely, itself!

To summarize, the number of faces of Ci », where 0 < k < n, that are strictly congruent to C;, p,
where 0 <j < p, is given by ,Cp * »-pCkj, provided that n > p and n — p > k —j. This formula
covers all faces except the vertices. But we know that there are ,Cy vertices of C, ».

If p # 2j, then the number of faces of C, , that are congruent to Cj,,, is
nCp(nprkfj + nprkfp +j) = nCp(nprkfj + nprnfkfj)-
Let’s see if we can develop a clearer picture of which facets occur in Ci, ». If Cj,p is a facet of

Ci,n, where 0 <j < p, we have seen that n > p and n — p > k —j. The first inequality says that the
facets of Ci,» appear above or in the same row as Ci, », which makes sense because the objects in
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the rows below are higher-dimensional objects. In order for ,C, - »-,Ck - to be positive, we must
have k —j>0, son —p >k —j>0. If we think of p as fixed, the values of j that satisfy this
compound inequality correspond to the C;, , that are facets of Cy, .. So let’s rearrange these
inequalities to isolate j. The first inequality, n — p > k — j, rearranges to j > k + p — n. The second
inequality, k —j > 0, rearranges to j < k. Thus,

k+p-n<j<k.

This compound inequality bounds j between lines in Pascal’s triangle that are parallel to its edges
and pass through the kth entry in row n. Combining this with the requirement that 0 < j < p, we
can illustrate with this figure:

- Cr1.u-1 Chp-1

Rown - C. n

The shaded parallelogram covers those Cj, ,, 0 <j < p, that appear as facets of Cy ,

and for which the formula for the number of such facets that are strictly congruent
to C;,, applies. The only missing facets are the vertices, of which there are ,Cy. For
vertices, our formula works only when p =j = 0.

Combinatorics of C»,5
Among the 4D cross sections, up to congruence, there are only two: Ci, 5 and C2,5. We know that
(1,5 is a 4D regular simplex with five vertices, 10 edges, 10 triangular faces, and five tetrahedral

3D faces. For fun, let’s apply what we’ve learned to get to know ;5 better.

According to our analysis, faces of (s, 5 are regular tetrahedra (Ci,4), regular octahedra (2, 4),
equilateral triangles, line segments (all the same length, as is true for all Cy, »), and vertices.
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Using our formula, there are

5C4 - 1C1 = 5 regular tetrahedral faces

5C4 - 1Co = 5 regular octahedral faces

5C3 - 2C1 + 5C3 - 2Co = 30 equilateral triangular faces
5C2 - 3C1 = 30 edges

and sC> = 10 vertices.

In 5D Euclidean space, the vertices of (2, s are the 10 points whose coordinates are permutations
of (1, 1, 1, -1, -1). Each vertex has six edges emanating from it since each edge has two vertices.
But if we multiply the number of edges by 2, we will overcount the vertices exactly by the
number of edges emanating from each vertex. Similarly, each vertex is a vertex of nine triangular
faces, and each edge is an edge of three equilateral triangular faces. Let v be a vertex, and let 7 be
the number of tetrahedral faces that v is a vertex of. Since a tetrahedron has four vertices, adding
up all the vertices for each tetrahedron will overcount the number of tetrahedra per vertex by a
factor of . That is, 4(5)/t = 10. Hence, every vertex is a vertex of two tetrahedral faces. A similar
argument shows that every vertex is the vertex of three octahedral faces.

How do these five 3D faces at a given vertex meet each other? Suppose we have two octahedral
faces. From our earlier analysis, we know that each is the intersection of a 4D-hypercubic face
with (2, 5. Picking a 4D-hypercubic face means to fix one of the five coordinates and let the other
four be free. Furthermore, we must set the fixed coordinate to +1, or else we have a tetrahedral
face. So the two octahedral faces are specified by a choice of two coordinates, which must both
equal +1. The vertices common to both octahedrons have +1 on these two coordinates. The
remaining three coordinates have two -1s and one +1, forming the three vertices of a shared
triangular face. Similar reasoning applies to the other pairings to show that every pair of these
five 3D faces that meet at a common vertex share a triangular face, except for the two tetrahedra.
In fact, any two tetrahedral faces intersect in only a vertex, but tetrahedra and octahedra always
share a single triangular face, as do any pair of octahedra (see the cover).?

Imagine: we have five regular tetrahedra in 4D space, every pair touching at a vertex, the 10
points of contact being all the vertices of C, 5. If we restrict our imagination to 3D, such a
configuration of five tetrahedra appears impossible. How can we imagine such a structure?

There’s an analog of this structure of five tetrahedra in >, 4, the regular
octahedron, whose faces consist of four triangles strictly congruent to Ci,3 and
four strictly congruent to C», 3. The four triangles strictly congruent to Ci, 3 form
the analogous structure. Here, four equilateral triangles touch pairwise at a vertex,
and the six points of contact among them form the vertices of the octahedron. See
the figure at left, where the four equilateral triangles are colored.

If a creature confined to the plane contemplated such a configuration of triangles, &

that creature would probably think it impossible. The creature would be able to y x‘x
place three triangles with each pair sharing a vertex, as shown at right, but would ;Ha\
have a hard time imagining placing a fourth triangle, of the same size, so that it y 1‘11.ij b

touches these three at their “free” vertices. What the flat creature is missing is the

2 C,, 5 is also known as a rectified 5-cell.
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ability to imagine in 3D, where the three triangles can hinge around the edges of the central hole,
rotating until their three free vertices form the vertices of that fourth equilateral triangle.

What we, as 3D creatures, might imagine, then, is to start by placing four identical regular
tetrahedra onto the four faces of a regular tetrahedral “hole,” something we can actually do in
real life. Each tetrahedron touches the other three and has a fourth “free” vertex. In this
pyramidal configuration, those four free vertices form a regular tetrahedron, but one that is
bigger than the others. Then, imagine that these four tetrahedra hinge around the triangular faces
of the hole into the fourth dimension, bringing their free vertices closer until those free vertices
form a tetrahedron congruent to the original four. In 4D, you can rotate around planes!

Combinatorics of C3 ¢
Let’s briefly visit the 5D object C3,6. Without my explaining, can you verify the following facts?

According to our analysis, faces of C3 ¢ are itself, the C2, 5 and Cs3, 5 shapes we just studied
(which are congruent), the regular tetrahedra Ci, 4 and C3 4, the regular octahedron C», 4, the
equilateral triangles C1,3 and (2,3, congruent edges C1, 2, and vertices.

Using our counting formula, we find that there are:

6Cs - 1C1 + 6Cs - 1Co = 12 faces congruent to (2,5

6C4 - 2C2 + 6Cs - 2Co = 30 regular tetrahedral faces
6C4 - 2C1 = 30 regular octahedral faces

6C3 - 3C2 + 6C5 - 3C1 = 120 equilateral triangular faces
6C2 - 4C2 =90 edges

and ¢C3 = 20 vertices.

Every 4D face is attached to five other 4D faces along a tetrahedron and five along an
octahedron. Every 4D face is on the opposite side of C3, ¢ from another 4D face, with which it
shares no vertices. More precisely, two 4D faces that are both strictly congruent to Cz,5 or to C3, 5
intersect in a tetrahedron, whereas the intersection of a 4D face strictly congruent to C, 5 with
one strictly congruent to C3, 5 is either an octahedron or empty. (And so each 4D face is joined by
a tetrahedron to the other five faces it is strictly congruent to, is joined by an octahedron to five
of the six faces it is not strictly congruent to, and is opposite the sixth of those faces.)

Every vertex has nine edges emanating from it and is a vertex of 18 triangles, nine octahedral
faces, six tetrahedral faces, and six faces congruent to Cz, s, of which half are strictly congruent
to (2,5 and half to Cs .

Every edge is an edge of four triangular faces, four octahedral faces, two tetrahedral faces, and
four faces congruent to C», 5.

Every triangular face is a face of one tetrahedral face, two octahedral faces, and three faces
congruent to C», 5.

5D creatures must regard C3, 6 as one of the most beautiful objects to behold!®

3 (3,6 is also known as a birectified 5-simplex or dodecateron.
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Notes from the Club

These notes cover some of what happened at Girls’ Angle meets. In these notes, we include
some of the things that you can try or think about at home or with friends. We also include some
highlights and some elaborations on meet material. Less than 5% of what happens at the club is
revealed here.

Session 37 - Meet 1 Mentors: Elisabeth Bullock, Clarise Han, Layla Jarrahy,
September 11, 2025 Minerva Johar, Shauna Kwag, Yaqi Li, Maya Robinson,
Ella Wilson, Dora Woodruff

We welcome all new and returning members and mentors to the start of our 19" year of Girls’
Angle!

Tournament design offers a wide array of math problems. Suppose you have to design a
fencing tournament with 10 competitors. You want every competitor to play every other
competitor at least once and you organize the event into rounds. In each round, up to 4 matches
are played simultaneously. What’s the most efficient way to organize the matchups? What is the
minimum number of rounds needed to meet all the requirements of the event? Can you
generalize your results to N competitors where each round has up to M matches occurring
simultaneously?

Now suppose you add a twist: Suppose every competitor needs some rest time, so no
competitor may be scheduled to play four matches in a row. How does this requirement affect
your schedules?

Session 37 - Meet 2 Mentors: Elisabeth Bullock, Elsa Frankel, Layla Jarrahy,
September 18, 2025 Minerva Johar, Shauna Kwag, Hanna Mularczyk

Sometimes, if you’re in the mood, plain old computation can be a lot of fun. Some members
played around with finding fast ways to convert fractions to decimals. After converting several
fractions to decimals, they noticed patterns that they could use to make their conversions even
faster. For example, convert 17/99, 38/99, and 80/99 to decimals. Do you see a pattern? How
much can you generalize this pattern? For example, after seeing the decimal expansions of 17/99,
38/99, and 80/99, what do you think the decimal expansion of 500/999 is? Can you prove the
patterns you see work? Can you use what you notice to quickly convert 50/111 to a decimal?
How about 2/37?7 And what about 25/101? For each of these fractions, you might notice
something that you can exploit to be able to write down the decimal expansions with hardly any
computational work.

Session 37 - Meet 3 Mentors: Elisabeth Bullock, Elsa Frankel, Clarise Han,
September 25, 2025 Layla Jarrahy, Shauna Kwag, Yaqi Li, Hanna Mularczyk,
Maya Robinson, Dora Woodruff

Take the month, day, and year of your birth and put them into the top three squares of a 3 by 3
grid. Can you fill in the 6 empty squares in this grid in such a way that the resulting array of 9
numbers is a magic square? That is, all the rows, columns, and major diagonals have entries that
add up to the same constant?
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For example, here’s an array where the top row represents the date of release of the
electronic version of this Bulletin:

10131]25
37122 7
19113 ] 34

No matter what the three numbers are in the top row, is it always possible to complete the array
to form a magic square? Will it ever happen that there are multiple ways to complete the array to
form a magic square for a given triple of numbers in the top row? What happens if you place the
given numbers across the middle row? Will all the numbers necessarily be whole numbers?

Session 37 - Meet 4  Mentors: Elisabeth Bullock, Elsa Frankel, Clarise Han,
October 2, 2025 Layla Jarrahy, Yaqi Li, Hanna Mularczyk, Dora Woodruff

Take your favorite geometric shape. How would you define it? A proper definition would be a
precise description of the shape such that every object of that shape fits the description, but no
object that does not have that shape fits the description. How would you define circle, square,
isosceles triangle, or cube?

Mathematics demands precision. Every object of study in mathematics has been given a
precise definition (or, is in the process of being given one). Having precise definitions enables us
to prove things about mathematical objects and enables mathematicians to find agreement on the
properties of objects. If two mathematicians disagree on a property of a mathematical object, all
they have to do to figure out who is correct is to prove which property is consistent with the
definition of the object and which is not. (While this may be easier said than done, it is always
the case that either an object satisfies a property, or it does not, or the property is not relevant to
the object, or one can choose whether or not the object has the property.)

Session 37 - Meet 5  Mentors: Elisabeth Bullock, Clarise Han, Layla Jarrahy,
October 9, 2025 Yaqi Li, Dora Woodruff

Visitor: Ila Fiete, MIT McGovern Institute

Ila Fiete is a Professor of Brain and Cognitive Sciences at MIT’s McGovern Institute. She earned
her bachelor’s degree from the University of Michigan and her PhD in physics from Harvard.

Some years ago, scientists reported on the existence of cells in the brain that periodically
fired when mice walked about. Prof. Fiete felt that those cells must be a part of network of cells
and she wanted to find that network and create a model for it. Her idea initiated a multi-year
research program that led to much deeper understanding of how many animals create spatial
representations and navigate the world. Her work involves machine learning, neuroscience, and
coding theory.

She began by showing us some animal’s feats of navigation, such as the kangaroo rat
navigating its complex network of tunnels or a type of ant in Morocco, Cataglyphis fortis,
foraging for food. As the C. fortis searches for food, it traces out a seemingly random walk. But
once it finds food, it heads straight back to its home. Interestingly, if the ant is put in a box and
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lifted from the food to some other place, when released, the ant will travel along a straight-line
path parallel to the path from food source to home. When it finds no home where home should
be, it commences on a systematic outwardly spiraling search pattern to find home.

When it comes to humans, navigation has been a great source of challenge that induced
much innovation. Our modern Global Positioning System (GPS) required construction of rocket
technology in order to place a large satellite system in orbit. For more on our efforts to conquer
navigation, Prof. Fiete recommends Dava Sobel’s book, Longitude.

Prof. Fiete then turned our attention to the brain, specifically, the hippocampus, which
looks roughly like a sea horse (hence, its name). It is a well-studied part of the brain whose
neural circuitry has largely been mapped out. Within the hippocampus, there are special cells
called “place cells.” In a mouse, these cells fire when the mouse is in a specific absolute location
in a region, and there are place cells that cover the entire region. Because these cells fire
consistently whenever the mouse is in a particular location in the region, independent of how the
mouse came to that location or whatever it is looking at in that moment, we deduce that the place
cells are not informed by visual cues. In contrast, there are “head direction cells,” which fire
when the head is looking in a particular compass direction. The physical proximity of these cells
to each other corresponds to closeness in head direction, whereas with place cells, physically
nearby place cells can respond to disparate locations in the region.

She also explained how there are cells that fire periodically as we walk in a fixed
direction, but these cells fire with different periods. This enables them to have small periods, yet
still inform us on how far we’ve gone for rather long distances via the Chinese Remainder
Theorem.

Session 37 - Meet 6 Mentors: Elisabeth Bullock, Elsa Frankel, Clarise Han,
October 16, 2025 Layla Jarrahy, Shauna Kwag, Yaqi Li, Hanna Mularczyk,
Maya Robinson, Ella Wilson, Dora Woodruff

Take your favorite mathematical idea. How would you illustrate it to convey its mathematical
content? If you come up with something that you’re proud of, consider sharing it with us!

Session 37 - Meet 7 Mentors: Elisabeth Bullock, Elsa Frankel, Layla Jarrahy,
October 23, 2025 Yaqi Li, Hanna Mularczyk, Maya Robinson

And if you come up with something visual that works better as a 3D object, consider realizing it
with a 3D printer. If you don’t know how to make a 3D printer print what you desire, teach
yourself a language for describing objects to a 3D printer, such as OpenSCAD.

Session 37 - Meet 8 Mentors: Elisabeth Bullock, Elsa Frankel, Clarise Han,
October 30, 2025 Layla Jarrahy, Shauna Kwag, Yaqi Li, Hanna Mularczyk,
Maya Robinson, Dora Woodruff

Can you think of a way to produce random positive integers in such a way that every positive
integer has a nonzero probability of arising? In your scheme, what is the probability that n
arises? What properties would any such method be required to adhere to? For example, if p(n) is
the probability that the positive integer n arises, then we would require that the sum of p(n) over
all positive integers be equal to 1. Are there any other properties that p(n) must obey?
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Calendar

Session 37: (all dates in 2025)

September 11  Start of the thirty-seventh session!
19
25
October 2
9 Ila Fiete, MIT
16
23
30
November 6
13
20
27 Thanksgiving - No meet
December 4

Session 38: (all dates in 2026)

January 29  Start of the thirty-eighth session!
February 5

12

19

26 No meet
March 5

12

19

26 No meet
April 2

9

16

23 No meet

30
May 7

Girls’ Angle has run nearly 200 Math Collaborations. Math Collaborations are fun, fully
collaborative, math events that can be adapted to a variety of group sizes and skill levels. We
now have versions where all can participate remotely. We have now run four such “all-virtual”
Math Collaboration. If interested, contact us at girlsangle @ gmail.com. For more information
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html.

Girls” Angle can offer custom math classes over the internet for small groups on a wide range of
topics. Please inquire for pricing and possibilities. Email: girlsangle @ gmail.com.
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to
mathematics. If you don’t like math, what don’t you like? If you love math, what do you love? What
would you like to get out of a Girls’ Angle Membership?

The $50 rate is for US postal addresses only. For international rates, contact us before applying.
Please check all that apply:

O Enclosed is a check for $50 for a 1-year Girls’ Angle Membership.

O I am making a tax-free donation.

Please make check payable to: Girls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending email to girlsangle @ gmail.com.

irls

o

gl

o

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and exciting math can be! Make new friends!

The club is where our in-person mentoring takes place. At the club, girls work directly with our mentors
and members of our Support Network. To join, please fill out and return the Club Enrollment form.
Girls’ Angle Members receive a significant discount on club attendance fees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each member as an individual and design
custom tailored projects and activities designed to help the member improve at mathematics and develop
her thinking abilities. Because we believe learning follows naturally when there is motivation, our
mentors work hard to motivate. In order for members to see math as a living, creative subject, at least one
mentor is present at every meet who has proven and published original theorems.

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the members how and for what they use math. Each
member of the Support Network serves as a role model for the members. Together, they demonstrate that
many women today use math to make interesting and important contributions to society.

What is Community OQutreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We believe that when our members’ efforts are
actually used in real life, the motivation to learn math increases.

Who can join? Ultimately, we hope to open membership to all women. Currently, we are open primarily
to girls in grades 5-12. We welcome all girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math or suffer from math anxiety, math is worth
studying.

How do I enroll? You can enroll by filling out and returning the Club Enrollment form.

How do I pay? The cost is $20/meet for members and $30/meet for nonmembers. Members get an
additional 10% discount if they pay in advance for all 12 meets in a session. Girls are welcome to join at
any time. The program is individually focused, so the concept of “catching up with the group” doesn’t

apply.

Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts. For security
reasons, only members and their parents/guardian will be given the exact location of the club and its
phone number.

When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendar details, please
visit our website at www.girlsangle.org/page/calendar.html or send us email.

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each
girl’s specific needs. We assess where each girl is mathematically and then design and fashion strategies
that will help her develop her mathematical abilities. Everybody learns math differently and what works
best for one individual may not work for another. At Girls’ Angle, we are very sensitive to individual
differences. If you would like to understand this process in more detail, please email us!
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we rely
on public support. Join us in the effort to improve math education! Please make your donation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has a Ph.D.
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow. In
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in
the mathematics educational publishing industry, and taught at HCSSiM. Ken has volunteered for
Science Club for Girls and worked with girls to build large modular origami projects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their
mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, founder and director of the Exploratory

Yaim Cooper, Institute for Advanced Study

Julia Elisenda Grigsby, professor of mathematics, Boston College

Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign

Grace Lyo, assistant dean and director teaching & learning, Stanford University

Lauren McGough, postdoctoral fellow, University of Chicago

Mia Minnes, SEW assistant professor of mathematics, UC San Diego

Beth O’Sullivan, co-founder of Science Club for Girls.

Elissa Ozanne, associate professor, University of Utah School of Medicine

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Liz Simon, graduate student, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, associate professor, University of Washington

Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin

Lauren Williams, professor of mathematics, Harvard University

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as
their desire to help others learn math. But does it really matter that girls be instructed by people
with such a high-level understanding of mathematics? We believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics
required, including fields that involve original research. Over the centuries, the mathematical universe
has grown enormously. Without guidance from people who understand a lot of math, the risk is that a
student will acquire a very shallow and limited view of mathematics and the importance of various topics
will be improperly appreciated. Also, people who have proven original theorems understand what it is
like to work on questions for which there is no known answer and for which there might not even be an
answer. Much of school mathematics (all the way through college) revolves around math questions with
known answers, and most teachers have structured their teaching, whether consciously or not, with the
knowledge of the answer in mind. At Girls’ Angle, girls will learn strategies and techniques that apply
even when no answer is known. In this way, we hope to help girls become solvers of the yet unsolved.

Also, math should not be perceived as the stuff that is done in math class. Instead, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can show girls how math is relevant to their
daily lives and how this math can lead to abstract structures of enormous interest and beauty.
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Girls’ Angle: Club Enrollment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number:

Pick Up Info: For safety reasons, only the following people will be allowed to pick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, such as allergies, that you’d like us to know about?

Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes? Yes  No

Eligibility: Girls roughly in grades 5-12 are welcome. Although we will work hard to include every girl and to communicate with you
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities.

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the
optional personal statement on the next page.

Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand
everything on this registration form and the attached information sheets.

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
O Enclosed is $216 for one session 0O 1 will pay on a per meet basis at $30/meet.
(12 meets) ) )
O [I’'m including $50 to become a member,
O I will pay on a per meet basis at $20/meet. and I have selected an item from the left.

O I am making a tax-free donation.

Please make check payable to: Girls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending email to girlsangle @gmail.com. Also,
please sign and return the Liability Waiver or bring it with you to the first meet.
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only. How
would you describe your relationship to mathematics? What would you like to get out of your Girls’
Angle club experience? If you don’t like math, please tell us why. If you love math, please tell us what
you love about it. If you need more space, please attach another sheet.

Girls’ Angle: A Math Club for Girls
Liability Waiver

I, the undersigned parent or guardian of the following minor(s)

)

do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release,
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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