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An Interview with 
Karen Lange, Part 4 
 

This is the concluding part of our four-part 

interview with Prof. Karen Lange of 

Wellesley College. 

 

Ken: It sounds like there might even be 

applications of computability theory to 

number theory, because they’re dealing with 

subsets of natural numbers.  For example, 

what natural numbers are representable by 

certain binary forms? 

 

Karen: Yes, there are whole research 

subfields that ask: what are computable real 

numbers?  People are very interested in 

these kinds of things.   

 

Ken: What specifically are you interested 

in? 

 

Karen: Right now, a lot of what I do is 

search for cool mathematical problems.  We 

talked about how, although every vector 

space has a basis, when you try to translate 

that to the computable world, the theorem 

falls apart.  It’s true existentially, but not 

computably.  So, a lot of what I do is look 

for interesting mathematical problems and 

try to calibrate just how hard they are. 

 I can tell you a structure that I really 

like, that I want to know the answers about, 

but I don’t.  This open question has been 

open for me for way too long, and I’m 

frustrated about it, so if people get into it, 

they should tell me what they learn. 

Since computability is an area of 

logic, I often draw from structures and 

problems that are interesting to other people 

in other areas of logic.  We all love the real 

numbers.  Reals are a crucially important 

field. 

 Think about the properties of the 

reals.  It’s an ordered field.  It’s 

Archimedean in the sense that if I add one 

positive element to itself, I can get above 

any other positive element.  Earlier, you 

mentioned the algebraically closed fields.  

Well, you could also think about real 

closure, instead.  Because if you want to 

keep an ordered field, you’re not going to be 

able to algebraically close it and preserve an 

ordering, because you’ll be in a complex 

number situation. 

Using as your model example the 

real numbers, people came up with the idea 

of real closed fields. They’re ordered fields 

that are closed under taking roots of odd 

polynomials — every odd polynomial has a 

root — and you have square roots for 

positive numbers.  You can’t take the square 

root of a negative number in the reals, but 

you can take the square root of 2 or any 

positive number. 

So, people study real closed fields, 

just like they study algebraically closed 

fields.  And one structure, or a substructure 

of real closed fields that I became very 

interested in, is something called “integer 

part.”  As we know, the integers sit inside 

the reals, and the integers are like a 

backbone or skeleton for the real numbers. 

 What properties do integers have?  

Well, they have addition and multiplication.  

They’re a ring, not a field.  They’re ordered, 

because they’re sitting inside this ordered 

field.  Also, every real number is within 

distance one of an integer.  That’s why 

integers are kind of a skeleton for the reals. 

You could generalize and take any 

real closed field.  It’s something that looks a 

lot like the reals.  It’s got an ordering on it.  

If you want to have fun being 

successful in math, I think it’s 

incredibly helpful to cultivate your 

community of people you talk math 

with, because persisting alone is 

very difficult. 
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You’ve got all these roots.  It’s not 

necessarily complete in the analysis sense, 

because that gets you into uncountable 

territory.  But then, as I mentioned, the reals 

are Archimedean.  You have this nice 

property where, from any positive real 

number, if you add that number to itself 

enough times, you can get above any fixed 

positive number. 

 In general, real closed fields don’t 

necessarily have this property.  There are 

elements with qualitatively different 

magnitudes.  If you add 1 to itself and get all 

the natural numbers, you might not get 

above all elements in this real closed field.   

 So there are infinite elements and 

infinitesimal elements running around in 

some of these real closed fields.  Once you 

have infinite elements, you could ask 

yourself: Is there a backbone, like the 

integers were for the real numbers?  It won’t 

just be the integers anymore, because there 

are elements that are bigger than all whole 

numbers. 

 And, in fact, there is a ring, a 

discrete-ordered ring, where every element 

of the real closed field is within distance one 

of some element of the ring.  A lovely proof 

was produced by Mourgues and Ressayre in 

the ‘90s. 

 It’s an amazing result, because when 

you start to think about building the integer 

part, some naïve ways of building it fail.  So, 

there is an existence proof and there’s 

somewhat of a construction, but it’s a very 

complicated construction.  Moving to the 

computable context, my collaborators and I 

proved that there are computable real closed 

fields that don’t have computable integer 

parts. 

 What we don’t know is, how hard 

computationally is it to find an integer part 

of a given computable real closed field?  We 

know that you’re going to need at least the 

power of the halting problem, but we don’t 

know the exact complexity of the problem. 

Ken: Are you saying that if you somehow 

had a device that could answer the halting 

question, then suddenly, you would be able 

to compute more of these integer parts, but it 

still doesn’t get you all cases, and you’re not 

sure what you need to have so that you can 

say, “Yes,” to all computable real closed 

fields, with these tools, one can compute an 

integer part for it. 

 

Karen: This is on the right track of 

reasoning, but let me make it more clear. 

What we don’t know is if the halting 

problem is sufficient.  It might be that one 

could always use the halting problem to 

compute one of these integer parts.  But we 

don’t know yet. 

 Think of it as a lower-bound/upper-

bound issue.  What’s the complexity of 

integer parts?  I know that there are some 

real closed fields out there, where I’m going 

to need at least the halting problem, so 

anything below the halting problem isn’t 

going to cut it. 

 As for an upper bound, what we can 

guarantee is sufficient is some ridiculously 

high upper bound.  We should be able to get 

these bounds closer to each other, but the 

truth is we haven’t yet. 

 

Ken: You point out this hierarchy of 

complexity.  It’s hard for me to imagine 

what is less complex than the halting 

problem, but still allows you to compute 

some of the non-computable sets?  

 

Karen: Actually, this field is very young, 

but one of the big early questions was:  Can 

you get a subset of natural numbers that is 

strictly of lower complexity than the halting 

set?  And you can.  In fact, the different 

levels of complexity in between is dense.   
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of the content.   We 
hope that you consider the value of such content and decide 
that the efforts required to produce such content are worthy of 
your financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                           Girls’ Angle: A Math Club for Girls 
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Optimal Resource Placement: 
From Disneyland to Dominating Sets, Part 2 
by Jillian Cervantes and Pamela E. Harris12 
 
In this installment, we’ll examine in more detail the theorem by Jacobson and Kinch we 
mentioned at the end of Part 1, restated below [2]: 
 

Theorem. We have γ(2 × n) = 
1

2

n + 
  

. 

 

(For the definition of the graph 2 × n, see the start of the proof below.) Here, x    denotes the 

ceiling function, i.e., the smallest integer greater than or equal to x. 
 
The activity about cell phone tower placement at the end of Part 1 is answered by Jacobson and 
Kinch’s theorem, which tells us that for n = 8, we have γ(2 × 8) = 5. Did you have that number of 
cell phone towers? Yay! In fact, a placement of the 5 towers is illustrated below. 
 
 

 
 

 
How did they figure that formula out? How can we know with mathematical certainty that 5 is 
the optimal number of vertices? 
 

Note that proving the equality in the theorem above is equivalent to proving that ( 1) / 2n +    is 

both an upper bound and a lower bound for γ(2 × n). 
 

We first prove it is a lower bound, that is, γ(2 × n) ≤ ( 1) / 2n +   . We consider cases depending 

on whether n is even or odd. 
 
Proof. Consider the graph 2 × n with vertices labeled x1, . . ., xn and y1, . . ., yn with edges 
connecting xi, yi (1 ≤ i ≤ n), edges connecting consecutive vertices xi and xi+1 (1 ≤ i ≤ n – 1), as 
well as edges connecting consecutive vertices yi and yi+1 (1 ≤ i ≤ n – 1). 
 
 

 

 
1 Both authors are from the Department of Mathematical Sciences at the University of Wisconsin Milwaukee. 
2 This publication supported in part by a grant from MathWorks. 
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Case 1: Suppose n is even. Let S consist of the vertices xi, yj such that i = 1 (mod 4) and 
j = 3 (mod 4), together with vertex xn. 
 
(The notation a = b (mod m) means that m divides evenly into b – a and is read “a equals b 
modulo m.”  For more on modular arithmetic we recommend [3].) 
 
For our 2 × 8 grid graph, S consists of the circled vertices in the following graph: 
 

 
Please verify that S contains ( 1) / 2n +    vertices and dominates the 2 × n grid graph.  This 

shows that for n even, γ(2 × n) ≤ ( 1) / 2n +   . 

 
Case 2: Suppose n is odd. Let S consist of the vertices xi, yj such that i = 1 (mod 4) and 
j = 3 (mod 4). 
 

 
 

Again, please verify that S dominates 2 × n and S contains ( 1) / 2n +    vertices. Thus, when n is 

odd, we also have γ(2 × n) ≤ ( 1) / 2n +   . ☐ 

 
To complete the proof of Jacobson and Kinch’s theorem, we would next need to show that 

γ(2 × n) ≥ ( 1) / 2n +   . Rather than proving this inequality for the general n, we will prove the 

special case of γ(2 × 8) ≥ 5. We leave the general proof for you to explore and complete. 
 
Remark. Rigorously proving a lower bound for γ(G) is much more difficult than proving an 
upper bound. This is because for any proposed lower bound L, we must check that no subset of 

vertices of size ℓ < L dominates the graph. Note that this may involve testing 
| ( ) |

1

 
 

− 

V G

L
 subsets, 

where |V(G)| is the number of vertices in G. For example, for the 2 × 8 grid graph with 16 

vertices, we would need to test 
16

4

 
 
 

 = 1,820 subsets to check that any placement of 4 towers on 

the graph do not dominate! This is why computer-aided proofs can be so useful for proving 
lower bounds. In the following proof, however, we give an argument that allows us to avoid 
exhaustively checking every subset of 4 vertices. 
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Proceeding with the proof of the 2 × 8 case, we must show that there is no way we can arrange 4 
vertices to dominate the 2 × 8 graph. 
 
Proof. Let’s consider dominating the 2 × 8 graph with 4 vertices. We consider two cases: Either 
we select a corner vertex or we do not. 
 
Case 1: Select a corner vertex. 
 
Because of the symmetry of the graph, we may, without loss of generality, assume x1 is selected. 
 

 
 
Note that x1 dominates 3 vertices, namely, x1, x2, and y1. Then the 13 remaining vertices must be 
dominated by selecting 3 vertices. 
 
However, in a 2 × n graph, any selected vertex dominates at most 4 vertices (3 if it is a corner 
vertex, otherwise, it dominates itself, the vertex vertically across from it, and the vertices directly 
to the right and left). Thus, 3 vertices can dominate at most 3 × 4 = 12 vertices. Therefore, the 
graph cannot be dominated using 4 vertices in this case. 
 
Case 2: Do not select a corner vertex.  
 
We work left to right, dominating the leftmost vertices first. Notice that for x1 to be dominated, 
we must select x2, since in this case selecting the corner vertex y1 is not an option. 
 

 
 

Now, y1 is still not dominated. Our only option to dominate y1 without selecting a corner vertex is 
to select y2. 
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Selecting x2 and y2 dominates 6 vertices: x1, x2, y1, y2, x3, and y3. There are 10 vertices that are yet 
to be dominated. We now determine if there is any way to configure the remaining 2 vertices to 
dominate those vertices of the graph.  
 
Notice that any selected vertex will dominate 4 vertices, since we are not selecting corner 
vertices. Then any 2 vertices we select will dominate 2 × 4 = 8 vertices. Therefore, this graph 

cannot be dominated with 4 vertices, and so γ(2 × 8) ≥ 5. ☐ 

 

Although we proved in general that γ(2 × n) ≤ ( 1) / 2n +   , we have not proved in general that 

γ(2 × n) ≥ ( 1) / 2n +   . How would you go about proving the lower bound for the general 2 × n 

graph? 

 

Try to complete the proof and conclude that γ(2 × n) = ( 1) / 2n +   .  

 
In the time since Jacobson and Kinch’s 1983 paper, domination numbers have also been 
established for larger grid graphs. David C. Fisher gives a table of domination numbers for grid 
graphs of size up to 21 × 21, which we reproduce on the next page. 
 
Challenge problem: According to Fisher’s result, γ(4 × 6) = 7. Can you find an arrangement of 7 
towers which dominate the graph below? 
 

 
 
Next time, we will give you the answer as well as explore a variant of domination called (t, r) 
broadcast domination.  
 
References 

 
[1] Gonçalves, Daniel, et al. “The domination number of grids.” SIAM Journal of Discrete 

Mathematics, vol. 25, no. 3, 2011, pp. 1443-1453. arxiv. 
 
[2] Jacobson, Michael, and Lael Kinch. “On the domination number of products of a graph; I.” 
Ars Combinatoria, vol. 18, 1984, pp. 33-44. Science Direct. 
 
[3] Markan, Sean. “A Modular Arithmetic Primer.” Sean Markan's Homepage, 2021, 
markan.net/mods.html. Accessed 28 December 2023. 
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Theorem. For all n ≤ m and n ≤ 21, we have: 

 

,

if 1
3

1
if 2

2

3 1
if 3

4

1 if 4 and 5,6,9

if 4 and 5,6,9

6 4
1 if 5 and 7

5

6 4
if 5 and 7

5

10 4
if 6

7

5 1
if 7

3

15 7
if 8

8

( )γ

 
= 

 

+ 
= 

 

+ 
= 

 

+ = =

= ≠

+ 
− = = 

 

+ 
= ≠ 

 

+ 
= 

 

+ 
= 

 

+ 
= 

 

=
n m

m
n

m
n

m
n

m n m

m n m

m
n m

m
n m

m
n

m
n

m
n

G

13

13

23 10
if 9

11

30 15
1 if 10 and 10 or 13,16

13

30 15
if 10 and 10 and 13,16

13

38 22
1 if 11 and 11,18,20,22,33

15

38 22
if 11 and 11,18,20,22,33

15

80 3

+ 
= 

 

+ 
− = = = 

 

+ 
= ≠ ≠ 

 

+ 
− = = 

 

+ 
= ≠ 

 

+

m
n

m
n m m

m
n m m

m
n m

m
n m

m

33

33

22

22

26

8
if 12

29

98 54
1 if 13 and 13,16,18,19

33

98 54
if 13 and 13,16,18,19

33

35 20
1 if 14 and 7

11

35 20
if 14 and 7

11

44 28
1 if 15 and 5

13

44

 
= 

 

+ 
− = = 

 

+ 
≠ ≠ 

 

+ 
− = = 

 

+ 
= ≠ 

 

+ 
− = = 
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if 15 and 5

13

( 2)( 2)
4 if 16
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Interesting historical note: Many people cite this in a manuscript by Fisher, but upon searching, 
we could not locate the manuscript. Instead we cite [1], which identifies this result as one in a 
manuscript of Fisher. 
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Permutations and Basic Group Theory: Part 11  
by Robert Donley2 
edited by Amanda Galtman 
 
While recent installments focused on compositions and partitions, these structures now provide a 
motivated introduction to our next main topic, permutations.  As originally introduced in 
“Shortcuts to Counting” (see Volume 15, Number 3 of the Girls’ Angle Bulletin), a permutation 
is an ordered list of distinct objects.  In what follows, we attempt to quantify basic properties of 
permutations, with an eye towards studying all permutations together.  These ideas lead to the 
beginnings of group theory, the mathematical theory of symmetries.  
 
We maintain the definitions and notation for partitions and compositions from previous 
installments.  Every partition of k is also a composition of k with the same number of parts, and, 
given such a composition, we obtain a unique partition by ordering its parts.  Recall that the 

number of weak partitions of k with n parts is the binomial coefficient 
1+ − 

 
 

k n

k
. 

 
Example: Consider the set of all weak compositions of 4 with three parts. 
For each partition, we collect the compositions with the same parts in the 
same column at the right. 
 

By the formula, we count 
4 3 1

4

+ − 
 
 

 = 15 compositions.  The count for the first column is six, 

since we are ordering three distinct numbers. The remaining counts equal the binomial 

coefficient 
3

2

 
 
 

 = 3; we count words of length three with letters x and y, with x appearing twice. 

 
Exercise: Repeat the previous example for all weak compositions of 5 with three parts. 
 
To proceed, it will be helpful, but not necessary, to review the trinomial coefficient (or 
multinomial coefficient with three parts) in the installment “Compositions and Divisors” (see 
Volume 16, Number 3).  In any case, try to work out the following exercise by hand. 
 
Exercise: List all weak compositions of 5 with four parts. 
 
Let’s count these compositions by rearranging the entries of the partitions. 
 

Definition:  The trinomial coefficient 
( )!

( , , )
! ! !

+ +
=

a b c
C a b c

a b c
 . 

 
Recall that C(a, b, c) counts the number of words of length a + b + c such that x (resp., y and z) 
occurs a times (resp., b and c times). 
 
Returning to weak compositions of 5 with four parts, we first denote the corresponding partitions 

 
1 This is the 14th installment in a series that began in Volume 15, Number 3. 
2This content is supported in part by a grant from MathWorks. 
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5000,  4100, 3200, 3110, 2210, 2111 
 
and then count the compositions using the binomial or trinomial coefficient when needed: 
 

4 + 12 + 12 + 12 + 12 + 4 = 56 = 
5 4 1

5

+ − 
 
 

. 

 
For instance, to count the compositions associated with the partition 3110, we substitute the word 

xyyz.  Since y appears twice and x and z appear once, we calculate C(1, 2, 1) = 
4!

1!2!1!
 = 12. 

 
For longer words, we generalize as follows. 
 

Definition: The multinomial coefficient with n parts 1
1 2

1

( )!
( , , , )

! !

+ +
=

…

…

⋯

n
n

n

a a
C a a a

a a
. 

 
Theorem: The multinomial coefficient C(a1, …, an) counts the number of words in n letters of 
length a1 + … + an with a1 x’s, a2 y’s, and so on. 
 
Proof: Suppose the theorem is true with n – 1 parts.  That is, C(a2, …, an) is the number of such 
words of length a2 + … + an.  We insert a1 copies of x into such a word in two steps: First, we 
choose a1 positions for x from the total a1 + … + an positions. Then, we fill the remaining 
positions with one of the C(a2, …, an) words in y, z, ….  By the Matching Rule, we obtain 
 

1 1 2
2 1

1 1 2 2

( )! ( )!
( , , ) ( , , )

!( )! ! !

+ +  + + + +
= ⋅ = 

+ + 

… … …

… …

… ⋯

n n n

n n

n n

a a a a a a
C a a C a a

a a a a a a
.  □ 

 
Example: The number of weak compositions corresponding to the partition 43322111 of 17 with 
eight parts is 

C(1, 2, 2, 3) = 
8!

1!2!2!3!
 = 1680. 

 
Exercise: Calculate the number of weak compositions of 17 corresponding to the partitions 
43222211 and 44321111.  What do these partitions have in common? 

 
Exercise: Calculate C(1, 1, …, 1), C(k – n + 1, 1, …, 1), C(k, 0, …, 0), and C(a1, …, an – 1, 0).  
Interpret the corresponding words. 

 
Now that we can count the compositions corresponding to a given partition, we have 

 

Theorem: The number 
1+ − 

 
 

k n

k
 of weak compositions of k into n parts equals the sum of the 

multinomial coefficients C(a1, …, an), where a1a2…an ranges over all partitions of k with n or 
fewer parts. 

 
Example: Consider the weak compositions of 5 with five parts. The corresponding partitions and 
counts are 
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50000 41000 32000 31100 22100 21110 11111 
   

5 + 20 + 20 + 30 + 30 + 20 + 1 = 
5 5 1

5

+ − 
 
 

 = 126. 

 
Exercise: Redo the previous example for weak compositions of 6 with four, five, and six parts. 
 
The preceding analysis is common in mathematics and interpreted mathematically with group 

theory.  We have a set of interest with a large set of symmetries, we use these symmetries to 
break the set into smaller sets, and we identify each smaller set by a distinguished element.  
If we have good intuition for the symmetries, then our task of understanding the larger set 
reduces to the task of understanding the distinguished elements. 
 
While we only work with groups of permutations in this installment, a very different type of 
group is found in the four-part Fermat’s Little Theorem series (see Volume 6, Numbers 1-4) and 
the Summer Fun problem set “The Gauss-Wilson Theorem” (Volume 6, Number 5).  When we 
define groups below, it will be enough to keep in mind the following example.   
 
Example:  Let G be the set of symmetries that preserve the isosceles triangle 
at right.  Let X be the set of vertices {1, 2, 3}.  If we apply an element g of G 
to the triangle, the symmetry is entirely described by the final position of the 
vertices, and we can represent g by the target triangle.  By the Matching 
Rule, there are 6 symmetries; there are three choices for the new position of 
vertex 1, and two choices remain for vertices 2 and 3. 

 
Exercise: Except for the symmetry that fixes all vertices, each triangle represents either a 
rotation about the center of the triangle or a reflection across an axis through one vertex.  
Describe each symmetry as a motion of the triangle.  Which triangles have vertices fixed under 
the symmetry? 
 
To describe each symmetry, the triangle is not entirely necessary.  Each symmetry of the triangle 
corresponds to a permutation of the vertices, and vice versa.  For example, consider the 
clockwise rotation by 120° expressed by the second triangle; the symmetry permutes the vertices 
as follows: 

1 → 2,  2 → 3,  3 → 1. 
 
We have several ways to denote permutations in a more concise manner: 
 

1. One-line notation: Organize the vertex data into columns as follows: 
1 2 3

2 3 1
.  If we 

assume the top line is ordered, then the bottom line contains all information of the 
permutation.  This permutation is represented by 231 in one-line notation. 

2. Function notation: As an operation with inputs and outputs, permutations may be 
represented as functions: f231(1) = 2, f231(2) = 3, f231(3) = 2.  Of course, each input has a 
single output, and vice versa. 
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Exercise: List all symmetries of the triangle as permutations in one-line and function notation. 
 
Exercise: Express the permutations 21435 and 23451 as functions.   
 

3. Cycle notation: Before describing the third notation, let’s motivate with an example.  
One important theme of this series has been the iteration of operations to reveal structure.  
Let’s see what happens if we repeatedly apply the same permutation to a digit. 

 

Example: Consider the permutation 56723418 in one-line notation.  If we repeatedly apply this 
permutation to 1, we obtain the loop 1 → 5 → 3 → 7 → 1.  If we think of 1 as the initial position 
of a bug that travels with each application of the permutation, then the loop property is 
intuitively true.  Since there are only finitely many destinations, the bug must eventually return 
to a position it once visited before.  Because the permutation instructions are fixed, the bug will 
continue to travel in a loop. 
 
Exercise: Prove that the bug is already in the loop from the start.   
 
We’ll prove this later for general situations using group theory.  The other loops in this 
permutation are 2 → 6 → 4 → 2 and 8 → 8. 
 
The permutation is entirely described by these loops, or cycles.  To 
emphasize the cycle structure, we instead denote 56723418 as 
(1537)(264)(8), or (1537)(264) if missing values are understood to be 
fixed under the permutation.  To clarify, entries in a loop are collected 
in parentheses and ordered so that each entry points to the next entry 
in the same parentheses; the last entry points to the first entry.  This 
permutation is summarized by the cycle diagram at the right. 
 
Exercise: Express each permutation of {1, 2, 3} in cycle notation, and draw the corresponding 
cycle diagrams. 
 
Exercise: Draw the cycle diagrams for 21453, 21435, and 23451.   
 
Cycle notation is not unique, but the number and size of the cycles are fixed for a given 
permutation. For instance, (123) = (231) = (312) and (123)(45) = (45)(123). 
 
Example: The possible cycle structures for permutations of {1, 2, 3, 4, 5} are 
 

(xxxxx), (xxxx)(x), (xxx)(xx), (xxx)(x)(x), (xx)(xx)(x), (xx)(x)(x)(x), (x)(x)(x)(x)(x). 
 

Exercise: In each cycle structure in the example, replace the five x’s with the numbers 12345, 
and draw the cycle diagrams for these permutations. 
 
Exercise: Find the possible cycle structures for permutation lengths 4, 6 and 7, and repeat the 
previous exercise.  Do you recognize a formula for the number of cycle structures?  If not, see 
the installment “Generating Functions for Partitions” (Volume 16, Number 5). 
 
Exercise: Count the cycle structures for permutations where all cycles have length 1 or 2. 
Conjecture and prove a formula.  For instance, for permutations of length 5, we have three types: 
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(xx)(xx)(x), (xx)(x)(x)(x), and (x)(x)(x)(x)(x). 
 
Again, see the installment noted in the previous exercise. 
 
Next, we can define a multiplication of permutations by applying one symmetry after another.  In 
function notation, this multiplication corresponds to composition of functions, where the first 
symmetry corresponds to the inside function.  Since permutations are one-one and onto, their 
compositions are also.  That is, the composition of two permutations is another permutation. 
 
Example: For the triangle, consider what happens if we follow a rotation by 120° clockwise by 
the reflection that fixes the vertex 1.  In one-line notation, the corresponding permutations are 
231 and 132, so we calculate 1 → 2 → 3, then 2 → 3 → 2, and finally 3 → 1 → 1.  This 
composition gives the reflection that fixes the vertex 2, or 321 in one-line notation. 
 
Exercise: Satisfy yourself that the previous example, in function form looks like: f132 ◦ f231 = f321. 
 
Exercise: Compose the permutations 213 and 312 in either order.  Repeat for 21435 and 23451. 
Does the order of multiplication matter? 
 
Exercise: Compose the permutation 123 with both 132 and 312 in either order.  Describe these 
compositions in terms of the triangle. 
 
Exercise: Express 23451 and 51234 as functions, and compose 23451 with 51234.  Then 
compose 23451 with itself repeatedly until a pattern emerges. 
 
We now have seen an example of all the machinery needed to define a group. 
 
Definition:  A group (G, ∙) is a nonempty set G with multiplication g ∙ h satisfying the following 
three properties: 
 

• identity: there is an element 1 such that g ∙ 1 = 1 ∙ g for all g in G, 

• associativity: for all g, h, k, in G, (g ∙ h) ∙ k = g ∙ (h ∙ k), and 

• inverse: for each g, there is an h such that g ∙ h = h ∙ g = 1.  We denote h by g-1. 
 
Intuitively, the elements of the group can be thought of as rearranging the elements of some set 
X, although the definition does not require such a set X.   
 
In the example above, the six permutations of X = {1, 2, 3} form the group S3 with multiplication 
given by composition.  In one-line notation, the identity element is the permutation 123, and, for 
a given permutation in function notation, the inverse element is the inverse function.  To 
calculate the inverse in one-line notation a1a2a3, write 1 in position a1, 2 in position a2, and 3 in 
position a3.  For instance, the inverse of 231 is 312 and the inverse of 132 is 132.  With 1, 2, and 
3 as the labels of the vertices of a triangle, we see that rotation by 120° clockwise inverts rotation 
by 120° counter-clockwise and reflections are their own inverse. 
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Exercise: Find all permutations of {1, 2, 3, 4} in one-line notation.  
Find the inverse of each permutation.  Express each permutation as 
a symmetry of the tetrahedron at right.  These permutations form the 
group S4. 
 
Exercise: If we label the vertices of a square clockwise 1, 2, 3, and 
4, we can express its symmetries as permutations of {1, 2, 3, 4}.  
Find the symmetries of this square in one-line notation.  These 
permutations form the group D8. 
 
Exercise: Interpret each of the defining properties of a group in the context of a group of 
symmetries. 
 
Exercise: Prove that subtraction is not associative: (a – b) – c ≠ a – (b – c). 
 
Exercise: Prove that the identity element 1 of a group is unique. That is, if 11 and 12 are identity 
elements in a group G, then 11 = 12. 
 
Exercise: Prove that inverses are unique.  That is, if h and k are both inverse to g, then h = k. 
 
Next, we use the group properties together to derive an important result for solving equations 
with group elements. 
 

Theorem (Cancellation Law): Suppose g, h, and k are elements of the group G.  If g ∙ h = k then 
h = g-1 ∙ k. 
 
Proof: We multiply by g-1 on the right of both sides of the equation g ∙ h = k, �o get 

 

g-1 ∙ (g ∙ h) = g-1 ∙ k. 
 
By the properties of associativity, inverse, and identity, we have 
 

g-1 ∙ (g ∙ h) = (g-1 ∙ g) ∙ h = 1 ∙ h = h.  □ 
 
Exercise: If g, h are elements of the group G, prove that (g ∙ h)-1 = h-1 ∙ g-1. 
 
Finally, we consider properties that follow from finiteness conditions.  These properties hold for 
groups with a finite number of elements. 
 
Definition: If g is an element of a group and n > 0, define gn = g ∙ g ∙∙∙ g (n factors of g). 
If there is a smallest positive n such that gn = 1, we define n to be the order of g and denote this 
by |g|.  We also say that g has finite order.  In a similar manner, we denote the number of 
elements in the group G by |G|. 
 
Examples: The identity element 1 has order 1. Also, |231| = 3 and |132| = 2 in S3. 
 
Exercise: Find the orders of each element in S4 and D8.  Interpret the order of each element in 
terms of symmetries of the tetrahedron and the square.  Do you see a relationship between the 
orders of group elements and the order of G? 
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If an element g has finite order n, then gn = 1 and the cancellation law leads to the next formula.  
 
Formula for inverses: g-1 = gn – 1. 
 
Example: In S3, f231

-1 = f231
2 = f312 and f132

-1 = f132 = f132. 
 
Exercise: Verify the inverse formula for all elements of S4 and D8. 
  
Exercise: If g has order 2, prove that g = g-1. 
 
Exercise: If every element of G has order 2, prove that g ∙ h = h ∙ g for all g, h in G. 
 
Definition: We say G is abelian (or commutative) if g ∙ h = h ∙ g for every g, h in G. 
 
Exercise: Prove that the following examples are abelian groups: 
 

1. the integers under the operation of addition, 
2. the non-zero real numbers under usual multiplication, 
3. the complex numbers with absolute value 1 under complex multiplication, 
4. the integers modulo n for some fixed integer n > 1 under modular addition, and 
5. the modular units Un ≡ {k | there exists m such that n divides km – 1} under modular 

multiplication.   
 
See the series on Fermat’s Little Theorem for part 4 and the “The Gauss-Wilson Theorem” 
problem set for part 5. 
 
Note that it is probably clearer to refer to the group multiplication as the group “operation,” as 
natural examples use both addition and multiplication.  In those cases, we need to clarify which 
operation is used to define the group. 
 
Exercise: Fix n > 2.  Let Pn be a regular polygon with n sides.  How many symmetries does Pn 
have?  Prove that the set of symmetries, denoted by D2n, forms a group under composition.  Is 
the group D2n abelian?  List all symmetries in D10 and D12 as permutations in one-line and cycle 
notation. 
 
In the next installment, we’ll explore the notion of a group action to formalize symmetry as a 
group property and apply this machinery to the original example with permutations and 
compositions. We’ll also say more about the following problems. 
 
Exercise: How many elements of order 2 are in S4 and S5?  List these elements in cycle notation; 
recall the two types of redundancies for a permutation in cycle structure noted above.  What do 
they have in common?  Then, describe the elements of order 2 in S6. 
 
Exercise: Count the permutations for each cycle structure in S4 and S5.  Can you do it without 
listing them?  How far can you get with S6? 
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Cubics, Part 2 
by Lightning Factorial | edited by Jennifer Sidney 

 
Last time, I tried to look at a certain class of cubic equations (with real coefficients) that are 
known to have a unique real root.  I tried to find that unique real root, but I ended up discovering 
that the real part of its nonreal roots (as both of its nonreal roots have the same real part) is, itself, 
the root of a cubic equation with real coefficients. 
 
Specifically, if the cubic equation x3 + bx2 + cx + d = 0 has a unique real solution, then the real 
part of its nonreal solutions is the negative of the real root of the cubic equation 
 

t3 – bt2 + (c + b2)t/4 + d/8 = 0. 
 
(It’s the negative of the real root because the real root of this equation is the value of t that will 
translate the roots to the right so that the nonreal roots become pure imaginary, and the real part 
of the nonreal roots is the negative of that.)  I thought that was kind of neat, even though it 
doesn’t help me solve the original cubic equation.  In fact, I’d like to test it with an actual 
example.  Let’s consider the cubic with roots 1 + i, 1 – i, and 0, that is, the cubic 
 

x(x – (1 + i))(x – (1 – i)) = x3 – 2x2 + 2x, 
 
so b = -2, c = 2, and d = 0.  Since the real part of its nonreal roots is 1, we should see that -1 is a 
root of the cubic equation 

t3 + 2t2 + (2+(-2)2)t/4. 
 
Oh no!  It’s not, because (-1)3 + 2(-1)2 + 6(-1)/4 is -1/2, not 0!  What went wrong? 

 
Going back over my calculations, I see that I dropped a term.  I got to the following equation: 
 

(3t – b)(3t2 – 2tb + c) = t3 – bt2 + ct – d, 
 
but then I simplified incorrectly because I missed a term.  The correct simplification is 
 

t3 – bt2 + (c + b2)t/4 + (d – bc)/8 = 0. 
 

In the spirit of figuring things out, we asked Lightning Factorial to try to find a 
formula for the roots of a cubic equation in terms of its coefficients.  The cubic 
formula, like the quadratic formula, is well known and can readily be looked 
up.  But trying to figure out something yourself can take you on a journey 
that’s far more fun.  Let’s rejoin Lightning’s cubic math adventure! 

Please go back to the last installment and try to 
figure out Lightning’s error before reading on. 
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So when b = -2, c = 2, and d = 0, this becomes t3 + 2t2 + 6t/4 + 4/8 = 0.  Gosh, I hope that -1 is a 
root of this cubic!  Let’s see: (-1)3 + 2(-1)2 + 3(-1)/2 + 1/2 = -1 + 2 – 3/2 + 1/2 = 0 … yes! 
 
Unfortunately, the resulting cubic doesn’t seem any easier to solve than the original cubic, so it 
doesn’t seem like this approach helps. 
 
I know that in general, if the roots of the cubic x3 + bx2 + cx + d are r1, r2, and r3, then 
 

x3 + bx2 + cx + d = (x – r1)(x – r2)(x – r3) 
 = x3 – (r1 + r2 + r3)x2 + (r1r2 + r2r3 + r3r1)x – r1r2r3 

 
By comparing coefficients, we get Vieta’s formulas: 
 

b = -(r1 + r2 + r3) 
c = r1r2 + r2r3 + r3r1 
d = -r1r2r3 

 
In the situation I was hoping to solve initially – where x3 + bx2 + cx + d is strictly increasing and 
has a unique real root I called r – the other two roots are of the form R + Si and R – Si, where R 
and S are real numbers and i is the square root of -1, because nonreal roots of polynomials with 
real coefficients come in complex conjugate pairs.  From the first of Vieta’s formulas above, that 
means 2R + r = -b.  If I could solve for the unique real root of t3 – bt2 + (c + b2)t/4 + (d – bc)/8, 
which should be -R, I could then find the unique real root of the original cubic by computing  
-b – 2R. 
 
Hm.  I can turn a cubic with a root of -R into a cubic with a root of -b – 2R by scaling by 2 and 
translating (left) by b.  If I do that to the cubic t3 – bt2 + (c + b2)t/4 + (d – bc)/8, would I get back 
the original cubic?  I’m going to try it and see! 
 
The cubic 

t3 – bt2 + (c + b2)t/4 + (d – bc)/8 
 
has the unique real root -R, so the cubic 
 

(t/2)3 – b(t/2)2 + (c + b2)(t/2)/4 + (d – bc)/8 
 
will have the unique real root -2R.  This cubic simplifies to t3/8 – bt2/4 + (c + b2)t/8 + (d – bc)/8.  
Thus the cubic 
 

(t + b)3/8 – b(t + b)2/4 + (c + b2)(t + b)/8 + (d – bc)/8 
 
will have the unique real root -b – 2R.  After a bit of algebra (which I’ll spare you, but please 
double-check for yourself!), this simplifies to 

 
t3/8 + bt2/8 + ct/8 + d/8, 

 
which is just the original cubic divided throughout by 8 (ignoring the change in variables from x 
to t)! 
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In other words, if I let p(x) = x3 + bx2 + cx + d and q(t) = t3 – bt2 + (c + b2)t/4 + (d – bc)/8, then 
p(x) = 8q((x + b)/2), or, flipping it around, q(x) = p(2x – b)/8. 
 
Unfortunately, scaling and shifting the cubic polynomial left or right preserves the quality of 
being a cubic polynomial! 
 
I guess by translating horizontally, we could transform the cubic into one that has no quadratic 
term, thereby obtaining a cubic whose roots sum to 0.  That would be effected by translating to 
the right by b/3.  We’d get the cubic 
 

(x – b/3)3 + b(x – b/3)2 + c(x – b/3) + d = x3 + (c – b2/3)x + 2b3/27 – bc/3 + d. 
 
That means that if I can solve cubic equations that lack a quadratic term, I would be able to solve 
any cubic equation. 
 
Actually, that’s essentially the same idea behind “completing the square” for quadratic equations.  
There, one translates the parabola horizontally and eliminates the linear term, resulting in a 
quadratic equation that can readily be solved.  Unfortunately, with cubic equations, elimination 
of the quadratic term doesn’t seem to make it easier to solve! 
 
But we might as well take the simplification.  So from here on, let’s focus on cubic polynomials 
of the form x3 + cx + d. 
 
I wonder if there is a translation that does lead to an equation that can be solved more easily.  A 
cubic polynomial without a quadratic term places the 0 of the complex plane at the centroid of 
the triangle whose vertices are defined by its roots.  What if I translate horizontally so that the 
circumcenter of the triangle becomes the 0 of the complex plane?  That way, all the roots will be 
the same distance from the origin, so their magnitude would be the cube root of the absolute 
value of the constant term; and since one of the roots is real, the cube root of the constant term 
would be, up to a sign, the real root of the cubic! 
 
Let’s try that!  Hopefully, the amount we have to translate by in order to place the circumcenter 
at 0 will be some nice function of the coefficients.  If the roots are, again, r, R + Si, and R – Si, 
where is the circumcenter?  By symmetry, it is on the real axis, so it will be located where the 
perpendicular bisector of the line segment that connects r and R + Si intersects the real axis.  
Switching to Cartesian coordinates, the midpoint of the line segment connecting (r, 0) with (R, S) 
is ((R + r)/2, S/2).  Since the slope of that line segment is S/(R – r), the slope of the perpendicular 
bisector must be (r – R)/S.  Therefore, the equation of the perpendicular bisector is 
 

y – S/2 = (r – R)(x – (R + r)/2)/S. 
 
This line intersects the real axis when y = 0, so I need to solve the equation 
 

-S/2 = (r – R)(x – (R + r)/2)/S 
 

for x.  I get x = 
2 2 2

2( )

+ −

−

R S r

R r
.  Now the question is whether this quantity can be expressed in 

terms of the coefficients. 
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Let’s see.  From Vieta’s formulas, if the quadratic coefficient is 0, we get 
 

0 = 2R + r 
c = R2 + S2 + 2Rr 
d = r(R2 + S2). 

 
From the first equation, r = -2R.  That means that c = R2 + S2 – r2, which is the numerator of our 
expression for the circumcenter!  Therefore, 
 

x = 
2 2 2

2( )

+ −

−

R S r

R r
 = 

2( )−

c

R r
 = 

3
−

c

r
. 

 
Oh dear.  This last expression means that finding an expression for the circumcenter in terms of 
the coefficients is basically the same thing as finding an expression for r in terms of the 
coefficients, which means being able to solve the cubic!  This cubic is like a tight clam. 
 
Maybe I should think about what the form of the roots of a cubic can look like.  After all, 
knowing the quadratic formula, we know that the root of a quadratic with rational coefficients 

must be of the basic form m + n , where m and n are rational numbers.  And from this, we can 

see why it is possible to solve the quadratic equation with a translation of the polynomial by a 

rational amount.  If the roots of a cubic with rational coefficients all had the form m + 3 n , 

where m and n are rational numbers, then we should also be able to solve cubic equations by 
translating by a rational amount.  Since that doesn’t seem possible, it suggests that some cubic 
equations with rational coefficients will have roots that are not expressible in that form. 
 

However, I’m not sure what form to use.  Perhaps 3 m  + 3 n , where m and n are rational 

numbers?  Or perhaps m  + 3 n ? 

 
Since no particular form stands out to me, maybe I can simply try u + v, and by trying that, 
something will inform me what forms u and v can be.  That is, I’m hoping that the roots of a 
cubic equation can be split into a sum where each summand can be found either as the root of a 
cubic equation that is readily solvable, or perhaps even a quadratic equation. 
 
Here goes.  If u + v is a root of x3 + cx + d, then 
 

(u + v)3 + c(u + v) + d = 0. 
 
Expanding this out, I get 
 

u3 + 3u2v + 3uv2 + v3 + cu + cv + d = 0. 
 
I can also write this as 
 

u3 + 3uv(u + v) + v3 + c(u + v) + d = 0, 
 
or u3 + (3uv + c)(u + v) + v3 + d = 0. 
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That (3uv + c)(u + v) term sure complicates matters.  If that weren’t there, the equation would 
just be u3 + v3 + d = 0, and I can find many solutions to this equation.  One could just plug in any 
value for u and solve the equation for v. 
 
Hold on!  What would happen if I simply declare 3uv + c to be equal to 0?  Then, even though 
there are infinitely many solutions to the equation u3 + v3 + d = 0, only some of them would 
satisfy 3uv + c = 0 as well, and any solution (u, v) that satisfied both equations would give the 
solution u + v for the cubic equation x3 + cx + d = 0! 
 
That’s exciting!  I’ve got to try it! 
 
So if 3uv + c = 0, then v = -c/(3u).  The equation 

 

u3 + v3 + d = 0 
 
could then be rewritten 
 

3
3

3
0

27
− + =

c
u d

u
, 

 
which is a quadratic equation in u3!  We can solve for u3 using the quadratic formula! 
 
I think this opens the clam! 
 
Thus, to find the roots of a cubic, we first divide it by its lead coefficient to get a cubic with lead 
coefficient equal to 1 of the form x3 + bx2 + (some constant)x + (some other constant).  Then we 
perform a horizontal translation by -b/3 to obtain a cubic of the form x3 + cx + d.  Next, we solve 
the quadratic equation U2 + dU – c3/27 = 0.  Let’s let u be the cube root of a solution to this 
quadratic equation, and let v = -c/(3u).  Then u + v should be a solution to x3 + cx + d = 0.  We 
can then obtain a solution to the original cubic equation by adding b/3 to u + v! 
 
It’s strange because there are generally two solutions to the quadratic, and each solution will 
typically yield three cube roots.  Wouldn’t that produce six solutions to the cubic equation?  
Something fishy is going on here.  There can’t be six different solutions to a cubic equation!  
That must mean that different choices of square and cube roots will yield the same value of u + v.  
But that opens up the possibility that they might all yield the same value, in which case we’ll 
have only found one solution of the cubic equation.  But I guess that’s okay, because if you can 
find one solution to a cubic equation, you can reduce it to a quadratic equation and solve for the 
remaining two roots with the quadratic formula. 
 
In any case, I really need to sort out exactly what’s going on here.  Also, what do we do if u 
happens to be 0?  In that case, the equation 3uv + c = 0 won’t have a solution unless c is also 0.  
Lots more to think about! 
 

Can you sort out this situation before 
Lightning Factorial’s next installment? 
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Modeling Power Transmission Lines 
by Cecilia Esterman 
 
These problems give a basic idea of the kinds of problems I analyze in my work at Avangrid. 
 
1. A town of a hundred people is situated at the end of a long road from a power station. A series 
of n transmission towers are placed with wires strung between them along the road to the town. 
On any given day, the probability that one of these towers fails is p. If any of the towers fail, the 
town loses power. Assuming that the towers fail independently of each other, what is the 
probability that the town lose power on any given day? 
 
For Problem 2-5, there is a power station that supplies power to two towns, towns A and B. For 
town A, there are two transmission towers used to get power there, one old and one new. For 
town B, there are four transmission towers between the town and the power station, two old and 
two new. In any given year, the probability that a new tower fails is 1/6, whereas the probability 
that an old tower fails is 1/2. 
 
2. In any given year, what is the probability that town A loses power? What is the probability 
that town B loses power? 
 
3. Suppose there are 100 people who live in town A and 100 people who live in town B. The 
power station is able to replace one of the old transmission towers with a new one. To minimize 
the expected number of customers who will lose power in any given year, should an old tower be 
replaced on the line that services town A or town B? 
 
4. Now suppose there are only 40 people who live in town A and 100 people who live in town B. 
To minimize the expected number of customers who will lose power in any given year, should 
an old tower be replaced that services town A or town B? 
 
5. For what ratio of populations of town A to town B does it not matter which old tower is 
replaced (because replacing any old tower gives the same reduction in customer power losses)? 
 
For Problems 6-9, there’s a distribution network stretching out from the substation passing by N 
houses. Each house has a population of 5. Between each pair of consecutive houses, there is a 
distribution pole, and there’s a distribution pole between the substation and the first house. In 
this scenario, if a distribution pole fails, all the houses farther away from the substation lose 
power, but the other houses do not. On any given day, the probability that a distribution pole fails 
is p, and each distribution pole fails independently of the others. 
 
6. What it the probability that the kth house from the substation loses power on any given day? 
 
7. How many customers are expected to lose power on any given day? 
 
8. If N = 2, what must p be so that only 1% of all the people are expected to lose power on any 
given day? 
 
9. If N = 3, what must p be so that only 1% of all the people are expected to lose power on any 
given day?
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Member’s Thoughts 
 

Deriving the Quadratic Formula from Scratch 
by Ken Fan 
 
In Discovering the Quadratic Formula1 and The Quadratic Formula, Revisited,2 Addie Summer 
and Lightning Factorial explained how they figured out the quadratic formula from scratch.  As 
you study math, try to figure things out before reading solutions.  With patience, you will 
discover that you can figure out quite a bit!  In fact, last fall at Girls’ Angle, member Viola 
Shephard tried her hand at deriving the quadratic formula using only her mind.  She succeeded! 
 
That is, she found the solutions to the equation ax2 + bx + c = 0, where x is the unknown to be 
solved for, and a, b, and c are constants. 
 
Now, any way of solving that equation will ultimately result in the famous quadratic formula.  
However, there are many ways of getting there, and Viola’s method is subtly different from the 
standard approaches that can be found in textbooks or in the two articles mentioned above, so it’s 
worth a look.  Here’s what she did: 
 
She noted that she could solve quadratic equations of the special form (mx + n)2 = p, where m, n, 
and p are constants.  This expands to m2x2 + 2mnx + n2 = p. 
 
She then asked: How closely can I make this quadratic equation look like ax2 + bx + c = 0? 
 

She saw that if she set m = a , then the coefficients of the x2 terms will be the same.  And then 

she noted that she could let n = b/(2m) = b/(2 a ) to make the coefficients of x be the same.  

Getting two out of the three coefficients to be equal is pretty good!  Indeed 
 

2
2 2( )

42
+ = + +

b b
ax ax bx

aa
 

 
differs from ax2 + bx + c only by the constant c – b2/(4a).  Thus, Viola found that 
 

ax2 + bx + c = 
2

2( )
42

+ + −
b b

ax c
aa

 

 

But the equation 
2

2( )
42

+ + −
b b

ax c
aa

 = 0 is exactly of the kind that Viola noted she could 

solve!  Just add b2/(4a) – c to both sides, take square roots, and then isolate x in the resulting 
linear equation.  Voila, the quadratic formula! 
 
How natural and beautiful a derivation of the quadratic formula!  Congratulations, Viola! 

 
1 See pages 21-23 of Volume 10, Number 2 of this Bulletin. 
2 See pages 12-13 of Volume 11, Number 1 of this Bulletin. 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 34 - Meet 5 
March 7, 2024 

Mentors: Elisabeth Bullock, Jade Buckwalter, Serina Hu, 
Shauna Kwag, Gautami Mudaliar, Hanna Mularczyk, 
AnaMaria Perez, Vievie Romanelli, Swathi Senthil, 
Padmasini Venkat, Jing Wang 

 If you like different number systems and haven’t heard of p-adic numbers yet, check 
them out!  Briefly, let p be a prime number.  Consider sequences of integers {ak} with the 
property that for any positive integer m, there exists N such that ak – aj is divisible by pm 
whenever k and j exceed N.  We define an equivalence relation on these sequences by declaring 
that two such sequences {ak} and {bk} are equivalent if and only if for any positive integer m, 
there exists N such that ak – bk is divisible by pm for all k > N.  The p-adic numbers are the 
equivalence classes of such sequences.  Addition and multiplication of such sequences are 
defined component-wise.  Unlike in the integers, rational numbers, or the real numbers, in this 
number system, for some prime numbers p, the equation x2 = -1 has solutions.  Can you figure 
out for which prime numbers p the square root of -1 exist?  (In the p-adic numbers, -1 
corresponds to the sequence where every term is -1.) 
 

Session 34 - Meet 6 
March 14, 2024 

Mentors: Elisabeth Bullock, Jade Buckwalter, Clarise Han, 
Gautami Mudaliar, AnaMaria Perez, Swathi Senthil, 
Padmasini Venkat, Jing Wang 

 Thinking about Fibonacci numbers modulo n, for some fixed integer n > 1 is a rich 
source of mathematics! 
 Also, some members worked through some of the problems in the book The Mathematics 

of Secrets: Cryptography From Caesar Ciphers to Digital Encryption by Joshua Holden.  If 
you’re curious to know how two people can set up a way of sending secret messages without 
having to have a private meeting to discuss how to do it (that is, create a way of sending secret 
messages while also assuming that their conversations are being overheard by people that they 
do not want to be able to decipher their messages), check out this book.  (Or, try to think of a 
way to do it yourself!) 
 

Session 34 - Meet 7 
March 21, 2024 

Mentors: 
 

 
 

Elisabeth Bullock, Jade Buckwalter, Serina Hu, 
Shauna Kwag, Gautami Mudaliar, AnaMaria Perez, 
Swathi Senthil, Padmasini Venkat, Jane Wang, 
Jing Wang, Saba Zerefa 

 How many ways can you think of to show that the vertex of the parabola y = ax2 + bx + c 
occurs where x = -b/(2a)?  Can you show it without using calculus?  Speaking of quadratic 
polynomials, how many ways can you think of to derive the quadratic formula?  (See Member’s 

Thoughts on page 26 to see how member Viola Shephard found her own personal way of 
deriving the quadratic formula!) 
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Session 34 - Meet 8 
April 4, 2024 

Mentors: Elisabeth Bullock, Gautami Mudaliar, AnaMaria Perez, 
Swathi Senthil, Alaina Silverman, Padmasini Venkat, 
Jane Wang, Jing Wang, Dora Woodruff, Saba Zerefa 

 The interconnections in mathematics are so intricate and far reaching.  Frequently, at 
Girls’ Angle, two independent groups of girls will somehow find themselves working on the 
same thing, having arrived there from completely different directions. At today’s meet, the 
Apollonian gasket sprouted up in this way.  If you don’t know what the Apollonian gasket is, 
draw three circles in such a way that each is tangent to the other two.  Now, add circles to your 
picture in such a way that each circle you add is tangent to three circles already drawn, and so 
that whenever the circle touches another, the two touching circles must be tangent to each other.  
You’ll find that you can continue this process indefinitely (and in many different ways).  The 
resulting pattern of circles is an example of an Apollonian gasket.  
 

Session 34 - Meet 9 
April 11, 2024 

Mentors: 
 

 

Elisabeth Bullock, Jade Buckwalter, Bridget Li, 
Gautami Mudaliar, AnaMaria Perez, Swathi Senthil, 
Alaina Silverman, Dora Woodruff, Saba Zerefa 

 How would you generalize Pascal’s triangle to three or more dimensions? 
 

Session 34 - Meet 10 
April 25, 2024 

Mentors: 
 
 
 
Visitor: 

Alexandra Fehnel, Bridget Li, Gautami Mudaliar, 
AnaMaria Perez, Vievie Romanelli, Dora Woodruff, 
Saba Zerefa 
 
Cecilia Esterman, Avangrid 

 Cecilia Esterman is a recent graduate of MIT who now works at Avangrid, a clean energy 
company.  She mentored at Girls’ Angle while she was at MIT.  At Avangrid, she uses math to 
model real-world problems.  Her analyses are used to: 
 

• Quantify the benefit of replacing an asset 
• Quantify the benefit of adding or upgrading an asset 
• Analyze which projects are worth pursuing 

 
To illustrate, she engaged us with a probabilistic simulation of power transmission line failure.  If 
a transmission line fails, customers lose electricity.  Using a mathematical model, she can 
analyze the probability that people lose power and this can help power companies determine how 
to allocate resources. 
 
For a sampling of problems that give a flavor of the kind of work she does, see Cecilia’s problem 
set Modeling Power Transmission Lines on page 25. 
 
Another example of the kind of problem she models with mathematics can be understood by 
imagining that you are a newsvendor who sells newspapers.  If you don’t buy enough 
newspapers to meet demand, you will lose out on revenue.  However, if you buy too many 
papers, you will have incurred a cost due to purchasing papers that you can no longer sell at 
price.  (You can’t sell yesterday’s paper for full price!)  How can you determine the optimal 
number of newspapers to purchase in order to maximize profits? 
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Calendar 

 
Session 33: (all dates in 2023) 
 

September 14 Start of the thirty-third session! 
 21  
 28 Support Network Visitor: Isable Vogt, Brown University 
October 5  
 12  
 19  
 26  
November 2  
 9  
 16  
 23 Thanksgiving - No meet 
 30  
December 7  

 

Session 34: (all dates in 2024) 
 

February 1 Start of the thirty-fourth session! 
 8  
 15  
 22 No meet 
 29  
March 7  
 14  
 21  
 28 No meet 
April 4  
 11  
 18 No meet 
 25 Support Network Visitor: Cecilia Esterman, Avangrid 
May 2  
 9  

 
 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax-free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 

The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 

What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high-level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax-free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


