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An Interview with
Karen Lange, Part 1

Karen Lange is the Theresa Mall Mullarkey
Associate Professor of Mathematics at
Wellesley College. She earned her Bachelor
of Arts in Mathematics with a minor in
Computer Science with High Honors from
Swarthmore College. She then earned a
PhD in mathematics at the University of
Chicago under the supervision of Robert
Soare and Denis Hirschfeldt.

Ken: What's the first mathematical idea that
caught your interest? What did you find
interesting about it, and about how old were
you?

Karen: | really love this question, and two
things came to mind. One was in sixth
grade, and we were learning about the
distributive property of addition. There was
something where we were supposed to
always use the distributive property to solve
something in additionD(A + B) is equal to
DA + DB.

And | didn’t use the distributive
property the way that | was supposed to in
this entire assignment. | remember being
really frustrated, because even though | was
correct, the entire thing was marked as
wrong because | hadn’t done what | was
supposed to do. And | remember my dad
trying to explain to me what | was supposed
to do, and me just being very confused,
because | thought, “But this was true.”

| was supposed to writk plusB,
and then multiply byD, and | had probably
just done the opposite. | remember that
being very frustrating, this idea that
something can be true, but not what a
teacher is looking for. That | was having
trouble seeing the difference between what

Once you realize that you can
make discoveries yourself, well,
then you’re unstoppable, becaus

you have a better understanding
where any math that you've
learned comes from.

they wanted me to do, versus just solving
the addition problem.

That's not the best example, though.
My other example actually was an idea that |
kind of came up with, like my first
mathematical discovery that was mine.
Obviously, it wasn’t new or anything like
that. | think it was in ninth grade, and a
teacher had given us a bunch of Pythagorean
theorem kinds of problems about distance.
They were just, “Oh, find the distance
between these two points in the plane.”

And he gave us a bunch of these, and
| remember thinking, “Wait a minute, I'm
just using the Pythagorean theorem every
single time to solve these distance-between-
two-points problems.” | should say, he
hadn’t told us about the existence of a
formula for the distance between two points
in aline. And so, | remember being in my
bedroom, thinking, “I'm doing the same
thing every single time. | could write a
formula for this. There’s a formula here.”

| got really excited that | came up
with this formula, x1 minusxg) squared plus
(yr minusyo) squared, and then the square
root. |didn’t think it was by itself all that
interesting, but | was a little bit like, “We're
doing the same process over and over again.
My teacher should know that there’s a
formula for this.” | remember going to the
teacher the next day, and saying, “We’re just
doing this formula over and over again.
Why are we doing this?” Now, as a teacher,
| know why he was having me do it.

But | remember him telling me, “Oh,
you just read it in the book.” And |
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remember being very offended. | was like,
“What do you mean it's in the book? 1 just
figured this out.” | remember, in general,
being excited about realizing | could create
mathematics, and then again, being a little
bit frustrated that he was thinking | read it in
the book. Embarrassingly at the time, | was
not reading the book much at all.

But anyway, that was probably
somewhere in ninth grade, and | really
appreciate that he — Mr. Gustavson was my
teacher — set up a lot of experiences like
that that were discovery things.

Ken: That is a great story! | think that is

one of the conceptual breakthroughs that has
to happen in the whole long process of
becoming a mathematician. That's pretty
cool that you had the idea on your own

there, just coming to you as an idea, while
you were working out these distance
problems. Did that experience affect the
way you teach math today?

Karen: Definitely. Actually, the reason |
remember Mr. Gustavson — the other thing
about his class that was amazing — is that it
was a class called “Algebra, Logic and
Proof.” Everybody had seen algebra before,
but seen just the manipulations, and the idea
of the class was to introduce us all to the
idea of proof and logic.

So, we would study truth tables, and
then we would use a very simple proof
system to prove a lot of the algebra that we
learned. We had learned a lot of the rules of
algebra previously, but then how do you
start from essentially the properties of real
numbers, and of integers, depending on the
context, and derive all of these basic
algebraic facts that we use?

And so, on one side, there was a lot
of skill-building where you could learn by
doing the rote work, but then it connected to
what we were doing. On the discovery side,

| realized, as you say, the agency: “Oh, | can
discover some mathematics.”

On that side, it's definitely
influenced my teaching in the sense that |
want to try to give students that experience.
So, | love to teach. Sometimes | get to teach
a first-year number theory class, and | like to
teach it in the discovery-based, inquiry-
based learning style of, “Hey, work out
some examples. Write out the first 100
primes or at least the primes within 100, and
look for patterns there. Once you have your
patterns, are there things that you can
prove?”

Because | do find there’s just so
much power in ownership, in knowing that
you discovered it yourself. Other people
have discovered it before, but once you
realize that you can make discoveries
yourself, well, then you're unstoppable,
because you have a better understanding of
where any math that you've learned comes
from. You understand where it came from,
but then you also realize, “Oh, wait. | can
start asking my own questions, seeing my
own patterns, and then trying to prove
them.”

So, definitely, it impacts how | teach
in terms of trying to find ways, within the
constraints of what content I'm “supposed”
to be teaching, to give students some of that
discovery experience. The other part,
though, that | was alluding to with this class
was that it was my first introduction to proof
— this idea that | could prove things. |
could know and be sure of what was true,
without needing external authority. There is
this idea that | should be able to know and
determine if something is true, just using my
own logic and capabilities, and that | can
come up with a written verification of
what’s true, on my own. So, that class just
blew my whole mind.



Ken: At that age, were you already aware of
the difference between belief and proof? A
lot of students know things, and they’ll say
them as if they are definitely true, and they
will simply think that the statements are
definitely true and don’t need proof.

Karen: I'm not sure if I, until that class, had
made that realization. | think, unfortunately,
it wasn't necessarily that | believed. | think
that my philosophy was more like, “The
authorities have told me the truth, and |
believe the authorities, right?” It was a
belief in authority, and realizing that with
mathematics, | can be the authority for
myself. | didn’t need somebody higher up
with more expertise to tell me what was true
or false. I, myself, could be the determiner
of truth, which again goes to that agency
part of mathematics.

Ken: That's really cool. When you're using
this style of teaching, do you sometimes
have students who have difficulty
articulating what they notice? How do you
help those students?

Karen: That’s a great question, because
that’s one of the big challenges in teaching,
articulating what you notice. One thing that
| find really helpful about some of these
discovery styles of teaching, is actually for
me to back up, and — like your club —
have people, students, peers doing math
together. Oftentimes, a reason people aren’t
SO good at articulating patterns they see is a
fear that anything they think they see “isn’t
right.” Sometimes, they don’t think they see
anything, but sometimes it's, “Well, | see
this, but I'm not confident that that’s the
right thing to see.” Then, people just won't
even put ideas out there.

The peer aspect is so helpful when |
back out of the situation and people are
working with other people who are going
through that same experience of discovering

“What do you mean it’s in the

book? | just figured this out.”

their own agency. They see, “Oh, another
student isn’t so sure either. | notice this
seems to be true. | don’t know if this is
right, but maybe it's something — there’s
something going on with all the even
numbers doing something,” and the other
student realizes, “Oh, | thought there might
be something with the even numbers, but |
didn’t have the confidence yet to say it.”

When they see other students who
are maybe a little bit braver put themselves
out there, that actually goes a long way.
There’s also the scale of interaction, having
people crowdsource ideas, maybe not in
front of me, but just having two or three
people brainstorm their ideas together.

At first, the student might not
articulate what their ideas are, but after they
get more practice with smaller groups, and
especially smaller groups of peers who are
in the same place in their math journeys,
then they get braver. They realize, “Oh, I'm
not the only one who wasn’t sure but also
thought there was something about the even
numbers having some kind of property.”

So, actually, I've had to learn to get
more out of the way. It's less about me
directly interacting than about scaffolding
these smaller group peer-to-peer
interactions. I've helped bring people out,
but this is a lifelong journey.

To be continued...
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Compositions, Partitions, and Young Diagrams

by Robert Donley
edited by Amanda Galtman

We continue the development of partitions from the previous twolmstads. In this part, we
assign to partitions a visual design that complements the generatoimph approach and that
reveals properties not necessarily obvious in a purely numericalpgtescof partitions. We
keep the definitions and notation from previous installments; in patjaeicall that partitions
are denoted by non-increasing strings of digits andathét) denotes the number of partitions of
k with parts less than or equalro

First, we draw some direct connections between partitions and caimpgsiFor a partition
with largest part bounded by, we assign a weak composition withparts by recording the
multiplicity of each part. For instance, the partition 55432R oP1 yields the weak
composition 02112. To pass from a weak composition to the correspondingmasté list the
parts as many times as the composition indicates.

Exercise: What does the sum of the composition’s parts equal?
Exercise: For all weak compositions &f= 4 with 3 parts, list the corresponding partitions.

Exercise:What type of partitions correspond to such compositions with binary pdréd?s, we
use parts equal to 0 or 1. Find the partitions corresponding to thig bumabers with four
digits.

Another connection between partitions and weak compositions with anfixxeder of parts
follows from successive differences and partial sums. Fanost if we take successive
differences of the partition 75433 lof 22, we obtain the composition 21103. Here the last
parts of the composition and partition coincide, as the final differsabtracts 0. To reverse
this process, we take partial sums from the right, such as8H194.

Exercise: For a weak composition obtained by taking successive differendes pétts of a
partition, what does the sum of the composition’s parts equal?

Exercise: Find the corresponding weak compositions for the partitions of 5.

Exercise: Which partitions give rise to weak compositions (via successifgrehces) such that
the last part is the only nonzero part? To weak compositions wigiybentries and, in
particular, with all entries equal to 1?

Compositions and partitions diverge with respect to general techni§uese a rearrangement
of a composition yields a new composition, compositions display adagee of symmetry,
which points to the framework group theory. On the other hand, there is a powerful visual
approach to partitions that reveals an important symmetry not avaatxdenpositions.

! This content is supported in part by a grant from MathWorks.
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Definition: A Young diagram for a partition is an arrangement of rows of squares, ipcstid
the left. Each part corresponds to a row with that many squereéshe rows are listed from the
top in non-increasing order by number of squares. Partly to make gegduaiitions nicer to
express later, we consider the diagram with no squares to terg diagram.

For example, the corresponding Young diagrams for 542 and 7422 are

542 = 7422 =

Exercise: What Young diagram results from a partition with a single p&rtdm a partition with
all parts equal to 1From a partition with all parts of the same size?

Exercise:What does the width of a Young diagram represent? What does the kpigisent?

If we compare Young diagrams with the composition representations abevaultiplicity of a
part corresponds to the number of rows of that length, and the sucabfsnences correspond
to the lengths by which the rows overhang the rows immediately beneath Tiex’s in the
examples below indicate overhanging squares. The composition ha®fgmetO if a row has
no . The sum of the differences is the size of the largest part.

JEIE]

] ,
942 = T |x — 122 7422 = — 3202

Exercise: Draw the Young diagrams for the partitions of 5 and smaller dawnth successive
difference of the parts, and verify that the segment lengths sura terigth of the top row.

An important extension of the successive difference formulatianfgm a new partition from
a given partition by removing the squares that would contaim the manner shown above.
(That is, the boxes in the Young diagram which are viewable fréowlse removed.) By
repeating this process, we get a sequence of partitions and weak itmmpos-or instance, 542
yields the sequence

]
542 = x| — 42

an
2= [o]e]

with compositions 122, 22, and 2. Do you see how to reverse the prnasesbé
compositions? Note that the number of parts decreases by o atega The corresponding
sequences for 7422 are partitions 7422, 422, 22, 2 and weak compositions 3202, 202, 02

12



Exercise: Repeat for the partitions 644 and 6542. Try more examples,and 4 o >
record each sequence of partitions in the shape of an equilatangldriike 4 2 2
the one shown at right. 2 2

2
Exercise: Construct the sequences of partitions and Young diagrams
associated to the weak compositions (of successive differenceahd28301. What happens if
all parts of the composition are equal to 17?

Such a decomposition of a partition is a special casésafifand-Tsetlin pattern. Gelfand-
Tsetlin patterns are number arrangements in the shape of ardheqttilateral triangle such
that each lower entry is numerically in between the two erdbese or equal to one of them.
These patterns arise in calculations in combinatorics, paptigisics, and representation theory.

Exercise: Consider the sequence of partitions 6532, 542, 43, 3. Draw the Yogngndifor
6532, and, in the order that squares are added (by overlaying Young diagrédmagfatitions

in the sequence in reverse so that their top and left edgesgaeda| label the added squares at
each step with 1 through 4. What Young diagrams result from tegjrto squares with values
less than 1, 2, 3, or 4, respectively?

Exercise: Explore Gelfand-Tsetlin patterns as follows: choose a partitioandxp a Gelfand-
Tsetlin pattern, label squares as in the previous exercise, andathi@'m the restriction
property. What properties must a sequence of Young diagrams passgaesent a Gelfand-
Tsetlin pattern?

Many other properties of partitions follow from Young diagrams. FKgiven Young diagram,
another partition occurs if we instead list the sizes of thewas. From the above diagrams for
the partitions 542 and 7422, the column lists are 33221 and 4422111, respebttieatall this
operation theonjugation of a partition. Note that conjugation preserves the number of squares.

Exercise: Draw the conjugated partitions above and describe the conjugate atiarpart
geometrically. Find the conjugates of all the partitions of 5. tWappens if we conjugate the
conjugate of a partition?

Exercise: What types of partitions are unchanged under the conjugation operation? Draw
several examples. Explain how the Young diagrams for such partititreg®in one-to-one
correspondence with partitionslofvith distinct odd parts. Find the generating function that
counts such partitions.

Exercise: Verify that the first entry of a partition is the number oftpar the conjugate.

In the previous installment, we noted tpaf(k) is also equal to the number of partitionscof
with at mostn parts. While we first showed this using generating functionswt follows
directly from conjugation.

Further results from the previous installment can be visualizéd¥@ung diagrams. Since

partitions with largest part at mastorrespond to those Young diagrams with width less than or
equal ton, we interpret the hockey stick rule as follows with Young diagrams:

13



Prri(K) = prn-1(K) + pin-1(k—=n) + p-1(k—20) +. . ..

= + + jax|la|lx|x|lx| +

This schematic illustrates the identity at the top of the pdgmw= 5; the general case follows
from a similar schematic. The first rectangle represalihtéoung diagrams of width at most 5
and withk squares. The other three diagrams also represent collectigoarj diagrams.
Each subset is determined by the number of parts of size 5¢batains; we mark these parts
with x symbols. The remaining rows allow 4 or fewer squares.

Exercise: Revisit the previous installment and interpret the other redudist éhe partition
triangle in terms of Young diagrams.

The idea behind the Young diagram proof of the hockey stick rule exteotiser shapes. For
the hockey stick rule, we append Young diagrams of smaller widtprmgaession of rectangles
of widthn. To remove the width condition, we instead consider a progresssguaies with
increasing size.

Young diagrams contain many sub-rectangles, but there is a unique square
of largest size, called tHaurfee square that fits inside a Young diagram
from the upper left-hand corner. For the example of 542 shown at righf
the Durfee square has size 2.

| X

Exercise: Find the size of the Durfee squares of the Young diagrams corresptmtineg
partitions 111, 54321, and 5555.

Note that every Young diagram decomposes into its Durfee square of, §i2Young diagram
of height less than or equalng and a Young diagram of width less than or equal.tdJsing
the matching rule, the number of Young diagrams wgluares and a Durfee square of size
is the sum of

Prmi(K —mP —S)pymy(S)

assranges from 0 tk—n?. Since convolution corresponds to a product of generating functions,
this count is the coefficient dfin

2 2

tm 1 B tm
-t @EtMEt) @t") @ty -@t"§

If we sum over alin, we obtain the equality of generating functions

1 t tt

CoE DA ) @y aacy
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Exercise: Expand the three terms on the right-hand sidétai the terms up 15 of the
generating function for partition numbers. Forgbkeond term, use the binomial series

@ lt)2 A
Then rewrite the third term as
t*(1+t)°
- t?)*
and apply the binomial series
@ lt)“ Sl

Finally, list all partitions fok up to 6 to verify the Durfee square counts frohe@rm.

This approach also works for partitions with distiparts. In addition to a
distinguished square, each Young diagram withraistiow lengths contains | « | | »
a distinguished right triangle. This triangle kates in the first row and Tz
column of the Young diagram, and the hypotenufieeisargest diagonal to
the upper right that completes such a triangle.

Exercise: How many squares are in such a triangle of henghtWhen does the triangle contain
the Durfee square, and vice versa?

Exercise: Prove that every Young diagram with distinct rendths decomposes uniquely into
its distinguished triangle of heightand, after shifting square to the left to leftifys a Young
diagram of height less than or equairto Also prove that a Young diagram constructedis t
manner has distinct row lengths.

For Young diagrams with distinct rows, the numbeits k squares and distinguished triangle of
heightm is the coefficient of< in
m( m+1)

t 2
-t @& t7)

Since the counting functions for partition numbeith odd parts and distinct parts coincide, we
obtain the equality of generating functions

1 t t3 t6

=1+ + + +
(- O )d ) o) -Aat)- 1)ae)ar)

Recall that the sequence corresponding to thdéeftt side is sequené®0009in the On-Line
Encyclopedia of Integer Sequences.
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Exercise: Expand the four terms on the right-hand side isfequation to obtain the terms up to
t° of the generating function for partition numbeithvodd parts. List all such partitions floup
to eight and verify the counts for each distingedtriangle size.

Denote byPm, »n the number of Young diagrams that fit into a regta with heighim and width
n. Denote bypm n(K) the number of such diagrams witsquares. Of coursBm n =Pn,m and

Pm.n(K) = Pn, m(K).
Exercise: ComputePn, » directly for rectangles with heights 1, 2, and 3.

Exercise: Give a recurrence relation fBr, » based on the width Draw the corresponding
pictures with Young diagrams.

For such a Young diagram wikhsquares, we assign the composition ofith m+ 1 parts
whose entries are the multiplicities of row lengihthroughm. These words are counted by the

binomial coefficient
m+n

m

Exercise: Give another proof of this formula by counting fiaghs in the rectangle traced by the
lower edges of all Young diagrams that it contains.

Exercise: Prove that the formula fdtm n satisfies the recurrence relation.

Now consideipm n(K). If we alter the argument for the hockey stigler we obtain the
recurrence relation

Pm, n(k) = Pm,n- 1(k) + Pm- 1,n(k —n).

Let’s calculate the associated generating fundfign(t). First, note thgpy,n(k) =1if0 k n
and O otherwise. Thus

Fin() =p1n(0) +pon()t+. .. +pn(M" =1+t +12+ . . +t",
In terms of generating functions, the recurrencoibees
Fm, n(t) = Fm, n- 1(t) + tnFm— 1,n(t).

The factor ot" acts as a shift operation. For instance, if sednly the coefficients fdfm n(t),
so thatFy, ot) is given as 1 1 1, then we obt&in At), F2, A(t), andF2, 4t) as follows:

111 11211 1122211
111 1111 1111
11211 1122211 112232211

Exercise: Find F, 5(t) andF», ¢(t). Based on these examples, guess the generimathich
might be familiar, and prove the general patterFign(t). Verify the coefficients foF2, n(t)
with n = 2, 3, 4 by listing all partitions in the corresypling rectangle.

16



Exercise: Find the formula foFs, 3(t) andFs, 4t). Verify by listing the partitions.

Exercise: Using Young diagrams, explain why the coefficianit&m n(t) are symmetric. That is,
consider the squares not used by a Young diagrdneirectangle.

We find the general pattern fBg n(t) as a product of functions. From the recurrence,
Fon(t) =F2,n-1(t) +t'F1n(t) =Fon-a(t) +t(1 +t+t2 + . .. +t").
With F2, 1(t) = 1 +t + t%, we iterate to find

Fo At) = (1L +t9)(1 +t + 12,
Foot) = (1 +9)(1 +t + 2 + 3 +t%).

The general formulas are given by

E ()= (L+2+ .. H)(L+t+2+. .. +" (n even),
2n (L+2+. ..+ H(1+t+t2+ ... +""Y)  (nodd)

Exercise: Verify the formulas foiF;, ot) andF2, s(t). Then, assuming the cases with 1 are
true, prove the general formulas ferq(t) are true. Can you prove the formulas by desugibi
the associated convolutions?

The general formulas can be further expanded @@ogietric sums. For instance, wireis
even,

t) _ (l_ tn+1)(1_ tn+2) B (1 tn+1)(1 tn+2 )‘(1 t )

(1- t)(& t?) @ t?y

I:2,n(

and, if we convert to binomial series, we obtain

(2K) = k+1 5 k- n/2 1+ k n 2
Ponl)= 1 1

k+1 k- n/2 k n/f2 1 k-n 2
p2n(2k+l): - - + .
' 1 1 1 1

We express the formulas in this way since binowwvalfficients vanish when the upper index is
negative or smaller than the lower index.

Exercise: Verify these formulas for all values kbivhenn = 2, 4. For general even show
vanishing wherk > n. With n fixed, draw the graphs @b, as functions ok.

Exercise: Find the analogous formulas for addand repeat the previous exercise with 1, 3.
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Follow Your Nose

by Ken Fan | edited by Jennifer Sidney

As Prof. Langéexperienced, with math you don’t always have &alri¢in a book.Youcan
figure it out.

Last month, | followed a group of 8th graders waktit upon themselves to find all of the
Pythagorean triples. Would they succeed?

A Pythagorean triple consists of three whole nusibeat correspond to the lengths of the sides
of a right triangle. The most famous Pythagoregfetis 3, 4, and 5. But there are many others,
such as 5, 12, and 13, or 6, 8, and 10. Theseersmahtisfy the famous Pythagorean equation
that relates the side lengths of a right triangté Wwypotenuse of lengthand legs of lengthes
andb:

&+b?=c

Any positive numbers, b, andc that satisfy this equation correspond to the lesiof the sides
of a right triangle, wittc being the length of the hypotenuse.

The problem of finding all of the Pythagorean &#pls well known and was worked out long
ago. | just googled “Pythagorean triple” and gatk2,110,000 hits!

But you don’t have to look them up. You can figtltrem out, and you might discover how fun
it is to do so. Try it!

If you're skeptical, let’s look at what thes® graders did. As we follow their work, ask
yourself, “Is there anything they did that | coutdio myself?”

Examples

The first thing they decided to do was to find mexamples of Pythagorean triples. With more
examples, they reasoned, they might detect a patter

Using a combination of recall and guessing, thaledd8, 15, 17), (7, 24, 25), and (9, 12, 15) to
the solutions (3, 4, 5), (5, 12, 13), and (6, §, 10

An Observation

One of them noticed that in three of the solutidims,two larger numbers differed by 1: (3, 4, 5),
(5, 12, 13), and (7, 24, 25). They wondered ifeheere other Pythagorean tripkes, andc
wherec —b was equal to 1.

To find out, they substitutda+ 1 forc in the Pythagorean equation to get

a®+b’=(b+ 1%

2 See our interview with Professor Karen Lange on page 3.
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By expandinglg + 1¥, simplifying, and rearranging terms, they rewrthiis equation as
a—1=">2. From this equation, they saw thaaif- 1 is even, theb would be an integer. And
they saw thaad? — 1 is even if and only # is odd.

They plugged in consecutive odd integersaftm get more Pythagorean triples. Wiaen 1,
they got the degenerate solution (1, O, 1); bubigger odd numbers, they rediscovered (3, 4, 5),
(5, 12, 13), and (7, 24, 25), then found the soh#i(9, 40, 41), (11, 60, 61), (13, 84, 85), etc.

Isn’'t that neat? In just a few minutes, they madim find an infinite family of Pythagorean
triples all by themselves! Is there anything thelthat you don’t think you could have done?

A Sensible Next Step
Emboldened by this win, they decided to try to faadutions where —b = 2.
Guided by what they had just done, they substitbted® forc in the Pythagorean equation and
simplified to find the equation
&—-4=4h.

This equation made them wonder, “For which valdesis a® — 4 divisible by 4?”

They reasoned that faf — 4 to be divisible by 4% must be divisible by 4, arat is divisible by
4 wheneven is even.

By substituting consecutive even numbersafstarting at 2, they found the degenerate solution
(2, 0, 2), recovered the triples (4, 3, 5), (61®, and (8, 15, 17), and found (10, 24, 26),

(12, 35, 37), (14, 48, 50), etc.

What do you think they did next?

If you guessed that they tried to look for solusievherec —b = 3, you're right.

But they stopped midway through their procedureabse one of them had this wonderful
thought: Instead of doing—b = 3, therc —b =4,c—b =5, and so on, what if we try to do all of
the cases by doing—b =x? If we can do that, then we can substitute 3, 2, forxto get all

of these special cases.

In other words, they utilized the concept of thaalale!

So instead of substituting+ 1,b + 2, orb + 3 forc, they substituted + x in the Pythagorean
equation and found this intriguing equation:

a2 —x2 = b,
A few of them recalled the “difference of squarakjebraic identity and applied it to rewrite this
equation as
(a+x)(a—x) = 2xb.

So, now the question became: For what valuasamidx is (@ + x)(a —X) divisible by X?
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Isn’t it neat that a question about right triangtesrphed into a specific question about
divisibility?

Unlike for the cases = 1 and 2, the solution to the general divisipiitoblem was not clear.
They decided to make a table, with rows correspanth different values of, in each row, they
systematically listed values affor which X divides evenly intog + x)(a —X).

First several values ofa for which (a + x)(a —x) is divisible by 2

1357911131517192123252729313335¢
24681012141618202224 2628303234 36.

39152127 33394551576369 7581879399 105 11

481216 20 24 28 32 36 40 44 48 52 56 60 64 68 72

5152535455565 758595105115 125 135 145 155 165 175 185 195
61218 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 11

721354963 7791105119 133 147 161 175 189 203 217 231 245 2
481216 20 24 28 32 36 40 44 48 52 56 60 64 68 72

39152127 33394551576369 7581879399 105 11

10 203040 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

B@m\lmmhwml—\ X

What patterns do you detect?

The 8th graders noticed that sometimes, the valuashat work are the odd multiplesxfsuch
aswherx =1, 3, 5, and 7. But in other instances, thezesalues oa that work that are not
multiples ofx, such as wher=8 or 9. Yet even when the valuesadghat worked were not
multiples ofx, they were still spaced evenly, forming arithmegcies.

Then, one of the 8th graders noticed that the to@ut+ X)(a —X) is a product of two numbers
that differ by %, the very same number that the product must bdetiby to obtait. That is,
upon division by & a + x anda —x leave the same remainder. Let’s call this remeind This
means thah —x isr more than some multiple ok2 In other words, there is an integesuch
thata —x = 2xm+r, which impliesa + x = 2x(m+ 1) +r. Using these expressions #o+x and
a +x, the students needed to determine whem(2 1) +r)(2xm+r) is divisible by . Now,

(2x(m+ 1) +r)(2xm+r1) = 4m(m+ 1) + Xr(m+ 1) + Xrm +r2,

Given that the first three terms of the right sifi¢his equation are multiples ox,4dt suffices to
determine values afsuch that? is divisible by .

Other students were thinking about prime factoiore, since the question of whether a number
Y is divisible by a numbexX becomes clear if we know the prime factorizatioh¥ andX. We
need only check that for each prime numtyehe exponent gb in the prime factorization of

is less than or equal to its exponent in the pfextorization ofY.

Solet2" p2pp; [ be the prime factorization ok2 Here, we have made the prime factor
of 2 explicit because 2 must appear with positi@eaent in the prime factorization ak.2And

let 2™ p* p* p,*  R* be the prime factorization of Again, we make the prime factor of 2
explicit and use the same list of prinpaghroughpx for both by allowing the possibility of
having exponents that are zero. Then the printeriaation ofr? is 2°™ p2™ pi™ 2™ ™.
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In order forr? to be divisible by  we must haver@ nifori =1, 2, 3, ...k. In other words, if

we define
n/2

—_ n/2 n/2 /2 n/2
ro=2 P, Ps Py R J

where x is the least integer greater than or equal(edso known as theeiling of x), thenr
must be divisible byo; conversely, if is a multiple ofro, thenr? will be divisible by X.

Success!

In this way, the 8 graders found that for any positive integemwe can lea —x = mrp and get a
Pythagorean triple! Specifically, we get the Solut

a=mr+x b=mr(mmn+2)/(2X), c=b+x

Let’s apply this to the case= 3, which they were about to do before they stitheir focus to
the general method. Whers 3, X =6 = 23, soro = 23. Thus, values d for which
(a+x)(a—x) is divisible by X area = 6m + 3, for any integem (consistent with the table). For
this value ofa, we findb = 6m(6m + 6)/6 = Gn(m + 1), andc = 6m(m+ 1) + 3. Fom=1, 2, 3,
etc., we find the Pythagorean triples (9, 12, (B, 36, 39), (21, 72, 75), etc.

Whenx =4, X =8 =2, soro = 2 = 4. Thereforea=4m+ 4,b = 4m(4m+ 8)/8 = In(m + 2),
andc = 2m(m+ 2) + 4. We find the Pythagorean triples (81®), (12, 16, 20), (16, 30, 34),
(20, 48, 52), (24, 70, 74), (28, 96, 100), (32,,113D), etc.

The 8" graders succeeded in devising an algorithm fadyrimg every single Pythagorean
triple! Their method does not use trial and ervdnd they did it without having to look in a
book!

Is there anything they did that you think you cottldio yourself? I'd bet not!

With a little determination, | am sure you woulddi#e to come up with your own method for
producing Pythagorean triples. One key to sucogadinot to dismiss your own thoughts.
When you have an idea, try it! Notice that théiahideas these"8graders had did not
immediately lead to a general solution; they gahegeneral solution bit by bit. So when you
attempt your idea, don’t expect to find a compsetieition initially. Even if you don’t get a
complete solution, your efforts will very likely\g you other ideas.

Primitivity

The students noticed that many of the solutiong wWere getting were scaled up from smaller
solutions. For example, (6, 8, 10) is scaled omf(3, 4, 5) by a factor of 2. Also, (3, 4, 5) and
(4, 3, 5) are essentially the same solution, eitgorithm would produce the first if you sdb

1 and the second if you seto 2. So their algorithm leads to further quesid=or which values
of x andmwill the resulting solution bprimitive , that is, will not be a multiple of a smaller
solution? For which values gfandmwill we havea <b <c? (Can you show that in any
Pythagorean triple witb? + b?> = ¢, we cannot hava = b?)

At this point, however, the students voted to swgears and pursue other questions.
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I'll pick up their investigation where they leftfab show how it could have unfolded. But if
you're interested in seeing how you might expanohugheir work, read no further and have fun!

Primitive Pythagorean Triples

Let’s try to determine which values aindm produce primitive Pythagorean triples. In the
equationa? + b? = ¢, notice that any prime number that divides evamtly any two of the
numbersa, b, or c must also divide the third. For example, if an@inumbep divides botha
andb, thenp dividesa? andb?; hencep dividesa? + b?, which isc2. And if a prime number
dividesc?, then it must divide. (Please check the other two cases!) This mibann a
primitive Pythagorean triple, the numbers are pagwelatively prime, and if any two numbers
are relatively prime, then the triple is primitive.

So to understand which valuesxdindm produce a primitive Pythagorean triple, it suféice
determine when any two af b, or c are relatively prime.

Let’s recall the formulas the students foundddo, andc:
a=mr + X b = mro(mro + 2x)/(2x) C=b+x

Suppose we wish to understand whether two numbarglY are relatively prime. K andY
have a common divisor greater than 1, they wilehacommon prime divisor. ButifandY
are relatively prime, then no prime will divide elginto both. Thus, to check for relative
prime-ness, we can proceed prime number by prim&eu That is, for each prime numiper
we can check to seepfdivides bothX andY.

We might as well start with the first prime numiger,

If xis odd, then — in the notation from earlier — vagdn; = 1 (recall thath: is the exponent of 2
in the prime factorization obQ. Herero will have a factor of 2, but not 4. This meams is
even, and since we’re assuming tha odd, it must be thatis odd. Because=b + X, one of

b andc will be even and the other will be odd. Theref@svill not be a common factor ef b,
andc.

If xis even, them; > 1 andr will be even. That mearssis even. Since andc now have the
same parity, we need only determinb i§ even or not. We can rewrite the expressiot s

b= mzr—°2+ m. *)
2X

By construction [/ (2x) is a whole number. Sineeis a factor in both terms, fifiis even, then
b will be even and the triple will not be primitiv&o let's assumen is odd. We knowyp is
even, sd will be odd only ifr?/(2x) is odd, and; / (2x) is odd if and only ify is even.

Putting this together, we’ve found that the trigJ®, c will not have a common factor of 2 if and
only if x is odd or if 2 appears in the prime factorizatdéx an odd number of times andis
odd. Otherwise, all three numbers, andc will be even.
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Now suppos@ is an odd prime number.

Suppose does not divide evenly into If p divided evenly into botb andc, thenp would
divide their difference; but —b =x, and that would be a contradiction.

So suppose tha@tdoes divide intox. Letn be the exponent gf in the prime factorization of
Sincen > 0, p dividesro and, hencq dividesa. Becaus® andc differ by x, which is a multiple
of p, they will either both be divisible hyor neither will be divisible bp. To find a primitive
triple, we would need neither to be divisiblegpyWe'll consider two cases:is odd, omis
even.

If nis odd, themp"* * will divide r., sop will divide r/ /(2x). Sincep also divideso, b will be
divisible byp, and the triple will not be primitive.

If nis even (and not zero), thprdoes not divide, / (2x). Sincep does divideo, from formula
(*), we conclude thap dividesb if and only ifp dividesm.

Thusa, b, andc will not have a common odd prime factif and only ifp appears with even
exponent in the prime factorizationx&ndm is not divisible byp.

Putting all of this information about individualipre numbers together, we find that the values
andm give rise to a primitive Pythagorean tripleb, c if and only if

- X is an odd perfect square amds relatively prime to
- X is an odd power of 2 times an odd perfect squadersds relatively prime tox

Note that a number that is an odd power of 2 tiamesdd perfect square is twice a perfect
square. So we can restate the condition as fallows

The valuex andm give rise to a primitive Pythagorean trigleb, c if and only if
X is either an odd perfect square or twice a pedgeare, andis relatively
prime tox.

To illustrate, let's take& = 50 = 25 andm = 17. Them = 10 anda = 220,b = 459, and: = 509,
and, indeed, 220+ 459 = 509.

A Corollary

A corollary of this investigation is that in anyimpitive Pythagorean triple, the difference
between the length of a leg and the length of yfpetenuse will always be either an odd perfect
square or twice a perfect square.

Using the material in this investigation, can ybow that in any primitive Pythagorean trigle

b, c with a® + b? = ¢, exactly one of or b must be even antimust be odd? Combining this

with the corollary, we conclude that the differehetween the lengths of the hypotenuse and
one leg will be an odd perfect square, while tlifedince between the lengths of the hypotenuse
and the other leg will be twice a perfect squdfer example, in 220, 459, 509, the difference
509 — 220 is 289, which is 3 vhereas 509 — 459 =2. Isn’t that neat?

23



Romping Through the Rationals, Part 5

by Ken Fan | edited by Jennifer Sidney

Jasmine: We've managed to show that we
can use the splicing operation to modify an'
rational romper so that it begins 0,p1,
wherep is a positive integer. Now | think we
should try to show that any rational romper
can be transformed into any other rational
romper by a sequence of splices inductively
by showing that we can modify one to agre:
with the other on its first 3 terms, then its
first 4 terms, then its first 5 terms, etc.

Emily: Sounds like a good strategy! So
suppose, andb, are two rational rompers.
Since all rational rompers must begin

0, 1, ..., we know thad, andb, have the
same first two terms. So now let’'s assume
thatax = by for all k <N, whereN is some
positive integer greater than 2, and suppos:
an by, Can we show that we can modify
the sequenca, using the splicing operation
so that the resulting sequence agrees with -
sequencé, on its firstN terms?

Jasmine: Let's see. In that setup, the two
sequences begin like this:

Emily and Jasmine are studying sequerges

of nonnegative integers that have the property
that consecutive terms are relatively prime
and every nonnegative rational number is
equal toan/an + 1 for a uniquen. They have
dubbed these sequences “rational rompers.”

Last time, they seized upon an idea that they
are hoping will enable them to transform any
rational romper into any other rational romper
by a sequence of operations that they call a
“splice.” A splice modifies a rational romper
an in the following way: Suppose y are
consecutive terms in the sequeag@nd
suppose there is a subsequence disjoint from
the consecutive termsy, but which also
begins withx and ends witly. That is,
supposex = x andak+1 =Y, and there is a
subsequencay, @ +1, 8+2, ..., ag, Where we
have eithep >k + 1 orq <k Then we can
obtain another rational romper by removing
the subsequen@+ 1, ..., 8q-1and

reinserting it betweeax anday + 1.

aly a27 a37 "',aN—ly aNyaN+17

and

a17 a27 a37 ---aaN—l, bN, bN+1,

For definiteness, let’s also assume #aat:
labels of the two sequences.

an. If that's not the case, we can just swap the

Emily: Okay. We don’t want to mess with the fikst- 1 terms anymore, so hopefully we can do
some kind of splice that changes thdato by and only involves moving around parts of the

sequence beyond the fifdt— 1 terms.

Jasmine: If we're lucky enough to be able to penfarsingle splicing operation to make the
desired change, we would need to find, in the §iesfuence, the consecutive teams 1, by

somewhere after the firbt terms.
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Emily: And that will happen!
Jasmine: Why can’t the subsequeage 1, bn occur among the firdd terms?

Emily: Because the two sequences agree on thé\fist terms, and in the second sequence,
an - 1, bn occurs as the\— 1)-th and\th terms. Since it’s a rational romper, that nhesthe
one and only time those two numbers appear congelyut Soan - 1, bn does not occur among
the firstN — 1 terms of either sequence!

Jasmine: Oh, nice! So let's say that=an-1andam+1=bn, withm N. In fact, we can
assume than > N, because we’ve set up our sequences s@that an. So our first sequence
goes like thisay, az, as, ...,an-1, @, ...,am=an-1, @m+1=bN, Am+ 2, ....

Emily: We'd like to perform a splice that moves the+ 1)-th term to théth term.
Jasmine: That means we want to find the first cernae ofay after the fn + 1)-th term. And
since any positive integer appears infinitely mames in a rational romper, there will be fn
which is the smallest positive integer greater tinanl such thaéw = an:

&, @, 8, ...,aN-1, AN, ...,8m=an-1, @n+1=DN, .., AM = A, AV + 1, e

| think we’re all set to perform the splice!

Emily: Yes, we can remove the subsequence of tbatvgeen thenth term and th&ith term
and reinsert it between thd £ 1)-th term and thisth term:

a, a, as, ...,an-, am+1=bn, ...,au-1,aN, ..., Bm=an-1, Qv =an, am+1, ...

The result is a sequence that agrees with thenedttompeib, on its firstN terms! Since we can
always extend the terms on which the sequences,dayenduction, any rational romper can be
transformed into any other rational romper by aisege of splices!

Jasmine: Wow, that was painless! There was noaigin.
Emily: I'm kind of stunned how everything just warkut.

Jasmine: But it may take an infinite number of@pbperations to effect the transformation; |
guess that's to be expected since two rational essmight differ in infinitely many places.

Emily: Actually, when can a rational romper be sfanmed to another rational romper via a
finite sequence of splices?

Jasmine: Hmm. If we perform a finite number ofcgd, there would have to be a point in the
sequence beyond which none of the terms are afffégt@ny of the splices, because each splice
affects the positions of only finitely many ternSo ifa, andb, are two rational rompers that

can be transformed into each other via a finiteisege of splices, they would have to agree on
an infinite tail of terms.
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Emily: It seems like the converse might be true, tothat two rational rompers that agree on an
infinite tail of terms must be related by a finsiequence of splices. But it's not clear to me that
the method we used to transform one rational rortigpanother won't keep messing up terms
and require an infinite number of splices in allea

Jasmine: Maybe we can prove it by induction indtieer direction. Suppose we have two
rational rompers, andb, andax = bk for all k > N for some positive integé\. If we can show
that we can perform a splice to the sequen@® that the result agrees withon all terms from
theNth one on, that would do it.

Emily: To do that, we would probably want to perfosplices that move around only terms
before thel{l + 1)-th term. If that's possible, then I thinkiieans that splicing should enable us
to transform anyinite “rational romper” to any other finite rational rper that represents the
same set of rational numbers.

Jasmine: | see what you're saying. You're sayiraj if a, andb, are finite sequences of the
same length and consecutive terms are relativetyeprand the collection of rational numbers
adax+ 1 1s distinct and forms the same set of rational lnens as the rational numbdxdox + 1,
then you want to be able to transfoaato by via a finite sequence of splices?

Emily: Yes, although I think we also want to reguihat the two sequences have the same last
term, since no splice can move the last term afigefsequence to another location in the
sequence. This additional constraint isn’t a cambecause with actual rational romper
sequences that agree on an infinite tail of temescan apply it to the first so many terms up to
and including the first term of the tails whereytlagrree.

Jasmine: Maybe the same inductive argument wedslreame up with will work for these finite
sequences. Let’s see.

Emily and Jasmine review their inductive argument.

Emily: | can see that the argument goes througio wghere we show that the first sequence
looks like this:ai, a2, a3, ...,an-1, &N, ...,8n =an-1, @m+1=bn, @n+2, .... But then we have to
find an occurrence ay after the fn + 1)-th term, and | don’t see why that has torbe tn the
finite case. In the infinite case, there’s no peabbecause every positive integer must appear
infinitely many times in the sequence.

Jasmine: Actually, | think there’s a counterexampBonsider the sequence 0, 1, 2, 1, 3, 1, 4 and
the sequence 0, 1, 3, 1, 2, 1, 4. Both reprebentational numbers 0, 1/2, 2, 1/3, 3, and 1/4, but
there’s no way to perform splices to turn one thother. In fact, no splice can be performed
on either sequence!

Emily: Oh dear. What can be done?
To be continued ...
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Notes from the Club

These notes cover some of what happened at GinlgleAmeets. In these notes, we include
some of the things that you can try or think atautome or with friends. We also include some
highlights and some elaborations on meet matekiegs than 5% of what happens at the club is
revealed here.

Session 33 - Meet 1 Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta,
September 14, 2023 Shauna Kwag, Bridget Li, Gautami Mudaliar,
Hanna Mularczyk, AnaMaria Perez, Vievie Romanelli,
Swathi Senthil, Padmasini Venkat, Jing Wang

We welcome all new and returning members and memtwoour 17 year of Girls’ Angle!

Two separate groups of members happened to bepogdhe same topic: How does
one find the equations of tangent lines to conatiees. One group was working on parabolas
while the other was working on ellipses. Membédmaither group knew about calculus. There
are different ways of solving this problem. Cam yiink of a way?

Session 33 - Meet 2 Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta,
September 21, 2023 Bridget Li, Gautami Mudaliar, Hanna Mularczyk,
Tharini Padmagarisan, AnaMaria Perez,
Vievie Romanelli, Swathi Senthil, Padmasini Venkat,
Jane Wang, Jing Wang

Some members worked on solving contest probleam the 2022 AMC 10A
mathematics competition. If you enjoy solving gesbs from past competitions, we suggest
that when you solve them, you try to

- solve the problem in more than one way.

- see how much you can solve of the problem éytimeyour head.

- explicitly identify the central idea(s) of theoplem.

- understand how the answer depends on the giWermation.

- modify the problem or create a related problem.

Session 33 - Meet 3 Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta,
September 28, 2023 Gautami Mudaliar, Hanna Mularczyk,

Tharini Padmagarisan, AnaMaria Perez,

Vievie Romanelli, Swathi Senthil, Jing Wang,

Julia Wei, Dora Woodruff

Visitor: Isabel Vogt, Brown University

We're thrilled to have a Support Network visitrirdsabel Vogt, assistant professor of
mathematics at Brown University and former Girlagle mentor. Isabel explained her path into
mathematics and one of her most re¢babrems

She was raised in South Florida and attended alengdtiool that specialized in the arts.
In High School, she began to get more interestegience and math. On a whim, she applied to
the Summer Workshop in Mathematics at Princetorvéisity. She got in, and enjoyed the
program a lot, but when she arrived at Harvaraédiege, she majored in physics and
chemistry. During her sophomore year, she toolkathrolass from Prof. Joe Harris, and that’s
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when things clicked: She realized that math was wha wanted to do. She joined the
Undergraduate Women in Math club at Harvard andestanentoring at Girls’ Angle.

She then attended MIT for graduate school, studgigebraic geometry under the
supervision of Bjorn Poonen (who also serves orGinks’ Angle Advisory Board). There, she
first encountered a problem that would interesttbehis day: to understand the number of
generic points on a curve of degrken an ambient space of dimensigrand with genug, over
the field of complex numbers. This question hasabts in the Euclidean observations that a
line interpolates 2 points and a circle interpa@eoints. That is, through any 2 points, there
exists a line, but not necessarily through anyitppand, generically (meaning, not collinear),
for any 3 points, there exists a circle througiBalbut through 4 generic points. There was a
known formula for the expected number of generiagsp but it was not fully proven. Over the
course of years of tackling the problem and inatmiration with Eric Larson, she eventually
settled the question, showing that the expectedoeus, in fact, correct, except for 4 exceptions
with (d, g, 1) = (5, 2, 3), (6, 4, 3), (7, 2, 5), and (10, G, Quanta Magazineecently wrote about
her work with Larson in an article entitle®fd Problem About Mathematical Curves Falls to
Young Couple’

Session 33 - Meet 4 Mentors:  Elisabeth Bullock, Jade Buckwalter, AneshGupta,
October 5, 2023 Gautami Mudaliar, Hanna Mularczyk,
Tharini Padmagarisan, AnaMaria Perez,
Vievie Romanelli, Padmasini Venkat, Jane Wang,
Dora Woodruff, Angelina Zhang

Suppose you have a rectangular grid thatsguares byn squares. How many ways are
there to place the numbers 1 throughinto the squares in the grid in such a way that th
numbers increase down any column or from leftgbtracross any row?

Session 33 - Meet 5 Mentors:  Elisabeth Bullock, Gautami Mudaliar, Hanna Muladczy

October 12, 2023 Tharini Padmagarisan, AnaMaria Perez, Swathi Senthi
Padmasini Venkat, Jing Wang, Dora Woodrulff,
Angelina Zhang

Can you make perspective drawings of all the Rlatsolids? Of the five Platonic
solids, the cube is probably the easiest, but #wans a challenge. How do you ensure that the
drawing represents a block with equal edge lengths?

Session 33 - Meet 6 Mentors:  Jade Buckwalter, Gautami Mudaliar, Hanndaltzyk,

October 19, 2023 AnaMaria Perez, Vievie Romanelli, Swathi Senthil,
Padmasini Venkat, Jing Wang, Dora Woodrulff,
Saba Zerefa, Angelina Zhang

How many different algorithms can you devise td adist of numbers?

Session 33 - Meet 7 Mentors: Anushree Gupta, Shauna Kwag, Gautami Mudaliar,
October 26, 2023 Hanna Mularczyk, Tharini Padmagarisan,
AnaMaria Perez, Swathi Senthil, Padmasini Venkat,
Jane Wang, Dora Woodruff, Saba Zerefa, Angelinangha

Can you devise a method to fold an origami regutéagon? How can you ensure that
all 8 sides are the same length and that all tgkeamave the same measure?
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Calendar

Session 33: (all dates in 2023)

September 14  Start of the thirty-third session!
21
28 Support Network Visitor: Isable Vogt, Brown Weisity
Octobe 5
12
19
26
Novembe 2
9
16
23 Thanksgiving - No meet
30
December 7

Session 34: (all dates in 2024)

Februar 1 Start of the thirt-fourth sessior
8
15
22 No meet
29
March 7
14
21
28 No mee
April 4
11
18 No meet
25
May 2
9

Girls’ Angle has run over 150 Math Collaboratiodath Collaborations are fun, fully
collaborative, math events that can be adapted/éwiaty of group sizes and skill levels. We
now have versions where all can participate remoté/e have now run four such “all-virtual”
Math Collaboration. If interested, contact ugidsangle@gmail.comFor more information
and testimonials, please visitvw.girlsangle.org/page/math_collaborations.html

Girls’ Angle can offer custom math classes overitibernet for small groups on a wide range of
topics. Please inquire for pricing and possileiti Emailgirlsangle@gmail.com
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fliout the Club Enrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Pleass &but your relationship to
mathematics. If you don’t like math, what don't you like? If you Imagh, what do you love? What
would you like to get out of a Girls’ Angle Membership?

The $50 rate is for US postal addresses ohlyr international rates, contact us before applying.
Please check all that apply:

Enclosed is a check for $50 for a 1-year Girls’ Angle Membership.

I am making a tax-free donation.

Please make check payable®xls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending enwilstangle@gmail.com

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and exditg math can be! Make new friends!

The club is where our in-person mentoring takes place. At thegitisoyork directly with our mentors
and members of our Support Network. To join, please fill out andréne Club Enrollment form.
Girls’ Angle Members receive a significant discount on clubndéeace fees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each mamhba individual and design
custom tailored projects and activities designed to help the memerve at mathematics and develop
her thinking abilities. Because we believe learning follows niiusdien there is motivation, our
mentors work hard to motivate. In order for members to see maili\ang, creative subject, at least one
mentor is present at every meet who has proven and published otigioi@ms.

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the membersadder avhat they use math. Each
member of the Support Network serves as a role model for the nemitmgether, they demonstrate that
many women today use math to make interesting and important contribotgsosety.

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We bétiaireshen our members’ efforts are
actually used in real life, the motivation to learn math in@gas

Who can join? Ultimately, we hope to open membership to all women. Cuyrend are open primarily
to girls in grades 5-12. We welcorakk girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math far$tdm math anxiety, math is worth
studying.

How do | enroll? You can enroll by filling out and returning the Club Enrollment form.

How do | pay? The cost is $20/meet for members and $30/meet for nonmembensbekdeget an
additional 10% discount if they pay in advance for all 12 meetsassion. Girls are welcome to join at
any time. The program is individually focused, so the concept aftiicef up with the group” doesn’t

apply.

Where is Girls’ Angle located?Girls’ Angle is based in Cambridge, Massachusetts. Forigecur
reasons, only members and their parents/guardian will be given ttdaadion of the club and its
phone number.

When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendailsleplease
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will béke? Girls’ Angle activities are tailored to each
girl’'s specific needs. We assess where each girl is matieaity and then design and fashion strategies
that will help her develop her mathematical abilities. Everybedynks math differently and what works
best for one individual may not work for another. At Girls’ Angle,are very sensitive to individual
differences. If you would like to understand this process in mhetal, please email us!
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Are donations to Girls’ Angle tax deductible?Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we rely
on public support. Join us in the effort to improve math educaticedsBIlmake your donation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has.B.P
in mathematics from MIT and was a Benjamin Peirce assigtaféssor of mathematics at Harvard, a
member at the Institute for Advanced Study, and a National Sdrencelation postdoctoral fellow. In
addition, he has designed and taught math enrichment classes atBdsiseum of Science, worked in
the mathematics educational publishing industry, and taught at HC3&Nhas volunteered for
Science Club for Girls and worked with girls to build large modatagami projects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle reafies its goal of helping girls develop their
mathematical interests and abilities?Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, founder and director of the Exploratory

Yaim Cooper, Institute for Advanced Study

Julia Elisenda Grigsby, professor of mathematics, Bostondeolle

Kay Kirkpatrick, associate professor of mathematics, Unityeodilllinois at Urbana-Champaign

Grace Lyo, assistant dean and director teaching & legr8tagford University

Lauren McGough, postdoctoral fellow, University of Chicago

Mia Minnes, SEW assistant professor of mathematics, WDisgo

Beth O’Sullivan, co-founder of Science Club for Girls.

Elissa Ozanne, associate professor, University of Utabdof Medicine

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Liz Simon, graduate student, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, associate professor, University of Washington

Karen Willcox, Director, Oden Institute for Computationalgiheering and Sciences, UT Austin

Lauren Williams, professor of mathematics, Harvard Unitsersi

At Girls’” Angle, mentors will be selected for their dgth of understanding of mathematics as well as
their desire to help others learn math. But does it re} matter that girls be instructed by people
with such a high-level understanding of mathematicsWe believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tachlg/field regardless of the level of mathematics
required, including fields that involve original research. Over ¢inéucies, the mathematical universe
has grown enormously. Without guidance from people who understand a lohptimeatsk is that a
student will acquire a very shallow and limited view of mathé&satnd the importance of various topics
will be improperly appreciated. Also, people who have proven originaitehes understand what it is
like to work on questions for which there is no known answer andHmhvithere might not even be an
answer. Much of school mathematics (all the way through collegelves around math questions with
known answers, and most teachers have structured their teachingemdogtsciously or not, with the
knowledge of the answer in mind. At Girls’ Angle, girls willleatrategies and techniques that apply
even when no answer is known. In this way, we hope to help gidsngesolvers of the yet unsolved.

Also, math should not be perceived as the stuff that is done inataath Instead, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can showa@ulmath is relevant to their
daily lives and how this math can lead to abstract structuremaheus interest and beauty.
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Girls’ Angle: Club Enrollment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following people will be altb¥eepick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, such as alletigas/ou’d like us to know about?

Photography ReleaseOccasionally, photos and videos are taken to document andipaiblic program in all media forms. We will
not print or use your daughter's name in any way. Do we haweigston to use your daughter’s image for these purposée® No

Eligibility: Girls roughly in grades 5-12 are welcome. Although we waltkahard to include every girl and to communicate with you
any issues that may arise, Girls’ Angle reserves theatisn to dismiss any girl whose actions are disruptiveub attivities.

Personal Statement (optional, but strongly encouraged!}We encourage the participant to fill out the
optional personal statement on the next page.

Permission:| give my daughter permission to participate in Girls’ Angl@ave read and understand
everything on this registration form and the attached information sheets.

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
Enclosed is $216 for one session | will pay on a per meet basis at $30/meet.
(12 meets) _ ;
I’'m including $50 to become a member,
| will pay on a per meet basis at $20/meg and | have selected an item from the left.

I am making a tax-free donation.

Please make check payable®rls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending enwiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with yothe first meet.
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Personal Statement (optional, but strongly encouraged!)this is for the club participant only. How
would you describe your relationship to mathematics? What would yotoldget out of your Girls’
Angle club experience? If you don’t like math, please tell us whyou love math, please tell us what
you love about it. If you need more space, please attach anothier shee

, - .-1 0 ,
Liability Waiver

[, the undersigned parent or guardian of the ¥alg minor(s)

do hereby consent to my child(ren)’s participaiioirls’ Angle and do forever and irrevocably e Girls’
Angle and its directors, officers, employees, agjesmd volunteers (collectively the “Releaseesifrany and
all liability, and waive any and all claims, fojuny, loss or damage, including attorney’s feesang way
connected with or arising out of my child(ren)’stmapation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissibGols’ Angle or any of the Releasees. | forevelease,
acquit, discharge and covenant to hold harmlesR#heasees from any and all causes of action amdsbn
account of, or in any way growing out of, direatlyindirectly, my minor child(ren)’s participation Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further idiclg all
claims or rights of action for damages which my@nichild(ren) may acquire, either before or afteoh she
has reached his or her majority, resulting fronsarnected with his or her participation in Girlsidle. | agree
to indemnify and to hold harmless the Releasees &ibclaims (in other words, to reimburse the Reées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdie cost of
defending any claim my child might make, or thagjimtibe made on my child(ren)’s behalf, that isasésl or
waived by this paragraph), in any way connectetl witarising out of my child(ren)’s participatiamtihe
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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