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From the Founder

From day one, we aimed to hire a woman with a Fhath who cares
very much about girls’ math education at the KiZlas Head Mentor.
Thanks to the Mathenaeum Foundation, this goaléakty. Welcome to
our new Head Mentor, Grace Work! - Ken Fan, Predided Founder
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An Interviewwith
Tanya Leise

Tanya Leise is a Professor of Mathematics
in the Mathematics and Statistics
Department at Amherst College. She
received her doctoral degree from Texas
A&M University.

Ken: You study something that pertains to
every single one of us: circadian rhythms.
What got you interested in this topic and
how does it involve mathematics?

Tanya: I've always enjoyed applying math
to intriguing problems. As an undergrad, |
worked on a project on capillary surfaces in
zero gravity. If you put a straw into water,
what shape will the surface of the water take
inside the straw? If you try this experiment
here on Earth, you'll see that it curves, with
the water appearing to climb up the side of
the straw. The curve in zero gravity is a bit
different. We tested the model for capillary
surfaces in zero g using a specially designed
container that went up on the space shuttle.
That was very exciting, and the model
predictions turned out to be quite accurate.
Later, in graduate school, I turned to
modeling how cracks propagate through
materials like metals and polymers, which
involves a challenging mixed boundary
value problem and a lot of tricky
computations.

When | moved to Amherst, | wanted
to find a new project to work on with
someone nearby, so we could work in
person together. | talked to people working
on a variety of projects in areas like physics
and biology, and decided to jump into
circadian rhythms after | met Mary
Harrington in the Neuroscience Program at
Smith College. She’s been a great mentor
and colleague, and we’ve done quite a bit of
joint work involving undergrads from both

Give kids lots of experiences, both
indoor academics and outdoor
sports and nature camps, so they
can discover what they like best.

of our colleges, which has been really fun.
The circadian rhythms field in general has
been very welcoming to mathematicians,
and the biologists are eager to see more
mathematical modeling and time-frequency
analysis to help them more fully understand
their experimental data.

Ken: What kinds of questions are you
interested in answering about biological
rhythms? Could you please describe some
of the big mysteries of that topic?

Tanya: | focus on circadian rhythms, which
are the 24 hour patterns observed in most
organisms, whether bacteria, plants, or
animals, which persist even in the absence
of any time cues. They are generated by
feedback loops of “clock genes” in our cells.
The big question is how the expression of
these clock genes, which happens at the time
scale of seconds, can lead to a 24 hour
rhythm, several orders of magnitude longer.
Mathematical modeling has been crucial in
deducing how the intricate dance of
interacting genes and their proteins can lead
to the observed rhythms. The interplay
between experiments and modeling has been
fantastic, and the studies | most admire have
been by teams of biologists and
mathematicians working together to
creatively combine their approaches.

Ken: Would you please describe one of your
discoveries that you are most proud of?
How did you discover it?

Tanya: My work applies existing methods
to new areas, rather than creating new
mathematics. A major contribution I've
made to the analysis of circadian rhythms is

3
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Folding In Halt

by Jade Buckwalter, Milena Harned, Martina Maximovich, and Miriam Rittgnber
edited by Amanda Galtman

Introduction
We consider the repeated folding of a rectangular strip of paper and thefafueresulting
layers. In this problem, there are two methods of folding paper: right folds afaldsft A

right fold is a fold in which the right side of the paper is folded over to the left side.a8ynd
left fold is a fold in which the left side of the paper is folded over to the right side (see E)gur

12 :>! 12 :>I

A right fold A left fold

Figure 1. Right folds versus left folds.

Denote a right fold bR and a left fold by.. A fold sequenceF, is a sequenc&As...An Where
eachA« is anR or anL. Performing the right and left folds in order of the sequence results in a
model (i.e., a folded strip of paper). Notice that a sequenoddaltls creates creases that split
the paper into 2sections (see Figure 2). From left to right (in the unfolded rectandie), la
these sections consecutively from 1 to 2

H
N
w
N
'—\
N
w
I
o
»
\‘
©

Figure 2. How we are splitting the paper.

Performing the fold sequené&a creates a model consisting dflayers, each layer consisting of
a single one of the"2abeled sections. The numbers labeling the sections, read from bottom to

top, form a sequena, az, as, ..., a,, of section numbers. L&be the function from fold
sequences to sequences of section numbers such that

S(A1AAs...An) = a1, @, @, ..., @, .

2

1 To the best of our knowledge, these are new istltease let us know if you know otherwise. khgou!



For exampleS(RL) = 2, 3, 4, 1. We also define the functiofrom fold sequences to sequences

of layer numbers (A1AzAs...An) = by, b2, bs, ...,

2nl

whereby is the layer number (counting

from bottom to top) of section numbler In our previous example(RL) =4, 1, 2, 3. We will
refer to sequenceXF) assection sequencesand sequenceqF,) aslayer sequences

In this paper, we will prove some properties of section and layer sequences, and shows®w t
these properties to construct the layer sequence resulting from a givergidsz We will
then give sufficient conditions for a permutation of the numbers 1 thrdughb2 a layer

sequence.

Most of our conjectures are based on direct observation, using data in the table below.

Data
Fold
Sequencs S(Fn) L(Fn)

Fn

R 1,2 1,2

L 2,1 2,1
RR 1,4,3,2 1,4,3,2
RL 2,3,4,1 4,1,2,3
LR 3,2,1,4 3,2,1,4
LL 4,1,2,3 2,3,4,1
RRR 1,8,5,4,3,6,7,p 1,8,5,4,3,6,7,2
RRL 2,7,6,3,4,5,8, | 8,1,4,56,3,2, T
RLR 3,6,7,2,1,8,5,}§ 54,1,8,7,2,3, 6
RLL 4,5,8,1,2,7,86, 4,58,1,2,7,6,%
LRR 5,4,1,8,7,2,3,f 3,6,7,2,1,8,5,4
LRL 6,3,2,7,8,1,4,% 6,3,2,7,81,4,%
LLR 7,2,3,6,5,4,1,8 7,2,3,6,5,4,1, 8
LLL 8,1,4,5,6,3,2,1 2,7,6,3,4,5,8,1
RRRR 1,16,9,8,5,12,13, 4, 3, 14,11, 6, 71802| 1,16,9,8,5, 12,13, 4, 3, 14,11, 6,7, 1021p,
RRRL 2,15,10,7,6,11, 14, 3,4,13,12,5,8® 1| 16,1,8,9, 12,5, 4,13, 14, 3,6, 11, 10, 12
RRLR 3,14,11,6,7,10,15,2,1,16,9, 8,51 4| 9,8,1,16,13,4,5,22,11, 6,3, 14, 15, 200
RRLL 4,13,12,5,8,9, 16,1, 2,15,10,7,6,14, 3| 8,9,16,1,4,13,12,5,6, 11, 14, 3, 2, 15,71,
RLRR 5,12,13,4,1,16,9,8,7,10, 15,2, 3,4 6| 5,12,13,4,1,16,9,8,7, 10, 15, 2, 3, 14 41|,
RLRL 6,11, 14,3,2,15,10,7,8,9,16,1, 4,18 5| 12,5, 4,13,16,1,8,9, 10, 7, 2, 15, 14, 316
RLLR 7,10,15,2,3,14,11,6,5,12,13,4,6,9, 8| 13,4,5,12,9,8,1, 16, 15, 2, 7, 10, 11, 483
RLLL 8,9,16,1,4,13,12,5,6,11, 14, 3, 2,16, 7| 4,13,12,5,8,9, 16, 1, 2, 15, 10, 7, 6, 11,31},
LRRR 9,8,1, 16,13, 4,5,12,11, 6, 3, 14, 15,20| 3,14, 11,6, 7, 10, 15,2, 1, 16,9, 8, 5, 1241B,
LRRL 10,7, 2, 15,14, 3, 6,11, 12, 5, 4, 13,188, 9| 14, 3, 6,11, 10,7, 2,15, 16,1, 8,9, 12, 33
LRLR 11, 6, 3,14, 15,2, 7,10, 9, 8,1, 16, 1%42| 11,6,3,14,15,2,7,10,9, 8, 1, 16,13, 4.5
LRLL 12,5,4,13,16,1, 8,9, 10, 7, 2, 15, 146311| 6, 11, 14, 3, 2, 15, 10, 7, 8,9, 16, 1, 4, 1351P,
LLRR 13,4,5,12,9, 8,1, 16, 15, 2, 7, 10, 113,614| 7,10, 15,2, 3, 14,11, 6,5,12,13,4, 1, 1& P,
LLRL 14, 3, 6,11, 10, 7, 2, 15, 16, 1, 8, 9, 124513| 10, 7, 2, 15, 14, 3, 6, 11, 12,5, 4, 13, 16, B B,
LLLR 15, 2, 7,10, 11, 6, 3, 14, 13, 4,5, 12, 91816| 15,2,7,10, 11,6, 3,14, 13,4, 5,12, 9, 8,61
LLLL 16,1,8,9, 12,5, 4,13, 14, 3, 6, 11, 102715| 2, 15, 10, 7, 6, 11, 14, 3, 4, 13, 12, 5, 8, 9,11,




Lemmas
Note: In lemmas 1-5,Ax} is a fold sequence g} = S{A}), and {b} = L{ALY).

Lemma 1l We haveb, =k anda, =k. In other words, the permutatioks a andk b
are inverse to each other.

Proof. First,bkis the layer where we find secti&nsob, is the layer where we find sectian
By definition, ax is the section number in theh layer. Henceb, =k. Secondais the section
number sitting in théth layer, soa, is the section number in layex. By definition,k is the
section number in layds, hencea, =K.

Lemma 2 Let {A¢ be a sequence offolds, and IeS({Ag}) = &, &, as, ..., a,,. Then, for any
integer 1 k 2", there exists an integesuch that f, , a,,  }={2i -1, 2} (as sets).
Conversely, for any integer 1i 2"~ there exist& such that g, , a,, t={2i-1,12}

Proof. Start with a strip with™2 ! sections that has been folded into a model according to the
first n— 1 terms of the fold sequenc&f. We can form the desired model from this model by
first subdividing the section on each layer into two sections, and then performing thAg fold
For example, we divide the layer labeled “1” into sections labeled “1” and f2demneral, the
layer with section is divided into sections labeled21 and 2 (Sections 1 through- 1 must

be relabeled with the section numbers 1 through2 and sectionis relabeled with the next
two section numbers, which are-21 and 2) After we perform the fold\, the sections labeled
2i — 1 and 2will make up the layerk and 2 + 1 —k in some order, for some inteder
Conversely, every pair of layeksand 2 + 1 —k consists of sections formed by folding in half a
single layer that was relabeled with section numbiersl2and 2for some integeir.

Lemma 3. Foranyinteger 1i 2"~ we haveo_1+byi=2"+ 1.

Proof. By Lemma 2, there exiskssuch that g, a,,, .} ={2i -1, 2} (as sets). Sincé, =k,
this implies that b2 -1, ba} = { k, 2" + 1 —k}, and the lemma follows.

Lemma 4 LetAn+1be afold and leth} = L(AiA2As...An) and {B.%} = L(A1AAs... AcAn + 1).
Then the numbers 1, 2, 3, .., &pear in the same order in both sequeniogsafid {hﬂ}.

For example, the fold sequerR&results in the layer sequence 1, 4, 3, 2. MeanwRR,
results in the layer sequence 8, 1, 4, 5, 6, 3, 2, 7, in which the numbers 1, 2, 3, and 4 still appear
in the order 1, 4, 3, and then 2.

Proof. Let {ag = S(A1AAs...Ar) and {88} = S(A1AAs... AvAn + 1).

The order in which we encounter the numbers 1 throightbe sequencebf} corresponds to
the order in which we pass through layers 1 throdgh the model as we traverse the strip of



paper from its original left side to its original right side. Suppose we pass theyegh before
we pass through layey that is,ay < ag. Now perform the fold\, + 1. As we saw in the proof of
Lemma 2, the effect of performing this fold is to split the layer labelle® two sections labeled
2i —1and 2 One of these halves is folded into layels 4 through 2+, while the other half

remains where it is. Thereforap¢ becomes eitherad — 1 or 2y, Whileaq(I becomes either
2aq— 1 or &q. Sinceap <agimplies 2y — 1 < &y < 2a9— 1 < &g, We see that irrespective of
which half is folded up to the top half of the model, we @,@g a, - This inequality means that

when we perform the folé, + 1 and then traverse the model from the original left side to the
original right side of the strip of paper, we pass through lpye&fore layeq. Sincep andq
were arbitrary, the lemma follows.

Lemma5. Letbs, by, bs, ..., b, be the layer sequent€{ A}), wheren> 1. Ifby_1<by, then

- b,
boi+1> b2+ 2. If boi—1> by, thenbyi + 1 < by +2.

Proof. Fixi. Let’s observe how the model forms from the unfolded rectangular strip Wwith 2
sections labeled 1 through, paying particular attention to the sections-4, 2, 2i + 1, and

2i + 2. At the beginning, the section numbers 2, 2, 21 + 1, and 2+ 2 are all in the same
layer because there is only one layer. Suppose that sedtierisethd 2end up on a different
layer from the sectiong 2 1 and 2+ 2 for the first time after performing tlpia fold. (Note

that until the final fold is performed, sections-21 and Rare on the same layer, and sections
2i + 1 and 2+ 2 are on the same layer.) Prior tojthefold, the sectionsi2 1, 2, 21 + 1, and

2i + 2 are on the same layer and in that order either from left to right (of the rapételn right
to left. Thejth fold forms a crease between sectionarizl 2 + 1, and after thgh fold is done,
one of the two section pairsi{2 1, 2} and {2i + 1, 2 + 2} increases from left to right, while the
other increases from right to left (in their respective layers). Addiyomrather both pairs abut
the left edge of their respective layers, or both pairs abut the rightleetguée of the common
crease between sectionsahd 2 + 1). Therefore, any further folds before the last will either
fold both section pairs §2- 1, 2} and {2i + 1, 2 + 2} over or leave both in place. In either case,
there is still one pair increasing from left to right and one pair increasingright to left, and
they are still either both on the leftmost side of their layers, or both on timagt side. When
the last fold occurs, it either puts21 and 2+ 2 in the top half andizand 2 + 1 in the bottom
half, or vice versa. In other words, of the four numibers, b, by + 1, andby; + 2, the numbers
b2i — 1 andby; + 2 are either the two largest or the two smallest.

Sequence Construction

We can now use these lemmas to predict what happens when we add a fold, i.e., construct a laye
sequence % = L(AlAAs...AcAn + 1) from {b} = L(AiA2As...Ay). By Lemma 3, the sequence

{ qu} consists of consecutive pairs of numbers that add upté21. By Lemma 4, these pairs

are positioned in the same order that their smaller elements took in the s€dupnBy
Lemma 5, the numbers within each pair must alternate whether the higher or loveer num
comes first. The only thing left undetermined is the order of the first pairhwlejgends on the
nth fold.
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By definition, bl¢ is the position of the layer that contains section 1 in the folded model. If

section 1 is in the top half of the model, tHah> b.%. If section 1 is in the bottom half, then

bl¢ < bzq. If we start with an unfolded strip of paper divided inté ©sections and ifi > 1, then

aftern — 1 folds, we have a layer composed of the four sections 1, 2, 3, and 4 in either increasing

or decreasing order (from left to right in the model). If they are in isorgarder, if theith

fold is anL, we now have a layer of the sections 2 and 1 in that order; therefore, anptherl
in the bottom half and aR puts 1 in the top half. If thath fold is anR, we have sections 1 and
2 in that order; therefore, a subsequeputs 1 in the top half, whereasRiputs 1 in the bottom

half. If the sections are in the order 4, 3, 2, 1 insteal,again results in a layer with sections 2
and 1 in that order, whereasRmesults in a layer with sections 1 and 2 in that order. So, if fold

n+ 1 is the same type of fold as tfite fold, then B¢, b%) = (b1, 22* 1 + 1 —by). Otherwise,

(b%, b9 = (2" 1+ 1 —by, by). Once we know the order of the first pair, we can fill in
everything else using the information above.

Examples
We will now give some examples of finding the layer sequence resulting from adftity
Suppose we start with the fold sequeRteand want to add an

L(RL)
L(RLL)

4,1,2,3
?

Because the new fold matches the last fold of the starting sequence, the fiyvet mIngRLL) is
the same as the first numberi(RL). We insert a new layer next to each laydr(RL),
alternating whether the new layer comes first or second:

L(RL)
L(RLL)

4,1,2,3

We can fill in the blanks using the rule that- 1 + by = 2" + 1:

L(RL)
L(RLL)

1,2,3
,5,8,1,2,7,6, 3

If we had instead added &1to the original sequence, the first numbel {RL) would be the
second number ib(RLR):

L(RL)
L(RLR

4,1,2,3
.41, .23

We again fill in the blanks using the rule that 1+ by = 2" + 1:

L(RL)
L(RLL)

4,1,2,3
54,18,7,2,3,6

11



The two sequencegRLL) andL(RLR are very similar, but the order of the two numbers in
each pairlfi - 1, bzi) is switched.

Sequence Deconstruction

Now we will consider how to tell if a given ordering of the numbers 1 throlighetjual to
L(A1AAz... Ay for some fold sequencé\d.

Theorem. Letby, by, bs, ..., b, be a permutation of the numbers 1 throughThere exists a

fold sequencéiAzAs... An such that b} = L(A1A2As...Ay) if and only if the following three
conditions hold:

A. Foralll i 2"% we havedi_1+bp=2"+1.

B. Foralll i<2"1if by_1<by, thenba +1> by +2, and ifba — 1> bai, thenbyi + 1 < by + 2.

C. If n>1 and we remove the numbefs 2+ 1 through 2from the sequencebf, we are
left with a sequence of lengthi 2 that satisfies all three of these conditions.

Proof. We will prove that these three conditions are sufficient by showing that teezgaatly

2" sequences of length that satisfy the conditions. Because there are dlposible fold
sequences, and every layer sequence satisfies all three conditiond] ghewithat every
permutation that satisfies the conditions can be produced by some sequence of foldsofThe pr
will be by induction om. For the base case, there are only two permutations of length two: 1, 2
and 2, 1. These sequences are produced by the fold segRermis respectively. Now

suppose there are exactRy 2 sequences of lengtt 2* that satisfy all three conditions. Then, if

a permutation K} of length 2" satisfies condition C, the order of the numbers 1, 2, 3,">1 2
within {l} must be one of the"2 ! fold sequences. By condition A, each of these nunibisrs
paired with the number"2- 1 —i. The first pair can go in either of two orders, after which the
order within each pair is determined by condition B. Therefore, each df the&juences of
length 2~ 1results in two sequences of lengfhsb there are"Xequences total.

Two different fold sequences can never produce the same permutation, because the choice of
fold k determines the order of the first two numbers in the subsequence of [Ersgttir2re are
exactly 2 permutations produced by fold sequences. That conditions A, B, and C are satisfied
follows from lemmas 3, 4, and 5, so every layer sequence satisfies them.

If we were to continue studying this topic, we would look at layer sequencesigefuin types

of folds other thamR or L, and try to find methods for predicting the resulting section and layer
sequences.
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' The Needell in the Haystatk

- Colors and Perfect Matches
¢ by Deanna Needell | edited by Jennifer Silva

In the last article, we learned a bit about graph theory and how it helped
i my father George navigate the globe in an optimal fashion. Indeed, we
: £ discussed the “traveling salesperson” problem, which asks for the most
efficient path through a graph that visits each node exactly once. Graph themty gsr&ch and
broad subject that | wanted to write a follow-up article discussing othershigygraph
theoretic problems motivated by real applications. For example, Georgetssafsthaps when
he travels and utilizes different colors to label various cities and attractWhen coloring a
map, one typically tries to avoid coloring adjacent regions the same color (sthatis harder
to distinguish them from one another). This leads tgthph coloring problem. As another
example, when George and his partner Signe are in a large group of people, Georgatay w
match people with their friends. This type of goal can be formulatedragph matching
problem.

Let’s quickly review mathematical graphs and their notation, as in thartese. A
graph is a discrete object consisting of a set@ticesV and a set oédgesE. The vertex se¥
is simply a set of objects; in the above examples, the vertices could be the regiangmror
the people in the group. Each edg&ithen corresponds to a connection between two vertices;
in the above examples the edges could represent two regions being adjacent qn tndvmoa
people who like one another. The skeptic asks, “What if one person likes the other but not vice
versa?” In amundirected graph, edges are simply pairs of vertices, with no direction
information; in adirected graph, these edges contain directional information, so can be written
as ordered pairs. For example, in a directed graph, the edge (George, Signe)diciagtet that
George likes Signe, while the edge (Signe, George) indicates that 8ggp&&orge. We may
abuse notation slightly and refer to edges in an undirected graph as orderad pailis with
the understanding that the informatiany{) E is the same aw,(u) E. While a graph can be
defined by listing its vertex and edge sets, it is often easier to visualizéoyhérawing a
diagram with vertices drawn as circles and edges drawn as arcs bétarmen3ee Figure 1 for
an example.

Figure 1. Example of a directed graph with pe@seertices and directed connections as edges.

1 This content supported in part by a grant fromiWdéorks.
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Graph Colorings

Let us now turn to the problem of graph colorings. As mentioned, the problem is
motivated by the need to color regions on a map so that no two neighboring regions areethe s
color. To state this as a graph problem, we create a vertex for each region, andigat an e
between two vertices if they are neighbors on the map. We’'ll call twoe®tadjacent” if they
are connected by an edge. Note that there is no need for edges to have a directienfbecaus
regionA abuts regiom, then regiorB also abuts regioA. So our graph will be undirected. The
graph coloring problem is the problem of labeling each vertex with a color so thab no tw
adjacent vertices are labeled with the same color. We refer to this tgpmoassignment as a
coloring, and say that the graphdslored.

Let us pause here and note that if there\gre ) vertices then we can always color the
graph using colors and painting each vertex a different color. So a more interestingpguesti
would be this: can we color the graph with feweann colors? For a given number of coléys
a coloring of the graph using only thdseolors is called &-coloring of the graph. (More
formally, given a grapks = (V, E), we define &-coloring ofG to be a function
fi:V o {1, 2,3, ...,k such thatf(v) f(u) whenevery, v) E.) We may also ask what the
minimal number of colors is to color the graph in this way. In other words, what is the sikallest
so that the graph hasacoloring? The answer to this latter question for a gfajphcalled the
graph’schromatic number, and is often denotedG).

There are other interesting things we can associate to a graph. mmlexhe
chromatic polynomial, denotedP(G, k), gives the number of different ways the gr&pban be
colored using at mostcolors. It is an interesting fact that the chromatic polynomial is a
polynomial in the inpuk. We can define the chromatic number using the chromatic polynomial:

(G min{k: P(G, k) > 0}.

In our motivating example of map coloring, the chromatic number of the assogiafgh
is the minimum number of colors needed to color the map so that no two neighboring aegions
the same color. But graph colorings appear in numerous other applications asowell. F
example, they appear in scheduling applications, where events need to bedtlotate slots
in such a way that events requiring the same type of equipment do not occur durimgethe sa
time. In fact, even the now famous puzzle of Sudoku can be phrased as a graph coloring
problem. For the reader familiar with Sudoku, she is encouraged to construct a ighegih w
vertices so that a 9-coloring of the graph corresponds to a solved 9 x 9 Sudoku puzzle. But we’ll
focus on smaller graphs that are easier to draw on paper. (It is worth @shbate to the
planarity problem, which asks whether a given graph can be drawn on paper without any two
edges crossing — another fun and related graph problem).

[ Moz | Frankdut ™ [ Munizh | Frankdurt { Muizh { Frankiutt
.. A i i T ey o fiay

v e 8 o . " - o - -
{ Kan ——— Brin | Kan —————— (" BHafin. 1 | Kan ———— [* Barin |
U . o . ¥, N r . . - -

== T Fraibun e [ Fraibug e i Fraibun
': Sy R e j- SN i Bonii= e

Figure 2. Examples of a graph and colorings.

Look at the graph on the left of Figure 2. It has 6 vertices and 8 edges. One example of
3-coloring of this graph is shown in the center of the same figure. Since thereaddoaiidy, we
know that for this graph,(G) 3. So here is the question: can it be colored using fewer than 3
colors? Given that some cities are connected by an edge, the graph cannot bedl-Sulave
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The best way to learn math is to do math. Herghee®019 Summer Fun problem sets.

We invite all members and subscribers to the Bualliet send any questions and solutions to
girlsangle@gmail.comWe’'ll give you feedback and might put your saus in the Bulletin!

The goal may be the lake, but who knows what
wonders you'll discover along the way?

In the August issue, we will provide some
solutions. You could wait until the
August issue to see the answers, but you
will learn a lot more if you try to solve
these problems on your own.

Some problems are quite a challenge and
could take several weeks to solve, so
please don’t approach these problems
with the idea that you must solve them
all. Our main goal is to give you some
interesting things to think about.

If you get stuck, try to formulate a related
guestion that you can see a way to
actively explore to get your mind moving
and your pencil writing. If you don’t
understand a question, email us.

If you're used to solving problems fast, it
can feel frustrating to work on problems
that take weeks to solve. But there are
things about the journey that are

enjoyable. It's like hiking up a mountain. Gegfito the top rewards one with a spectacular
view, but during the journey, there’s a lot to aee experience. So here’s a meta-problem for
those of you who feel frustrated when doing thesblpms: see if you can dissolve that
frustration and replace it with a relaxed, optimsisense of adventure!

This is Summer Fun, not Summer Torture!
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A Peek ¢ Wavelets and Rhythr

by Tanya Leise

What are wavelets and why use them to To accomplish this scaling mathematically,
study circadian rhythms? Let’s start by let’s think about the wavelet as a function
thinking about a typical 24-hour activity (t) that looks like our basic pattern:
pattern of a mouse. She’ll run in her wheel,

push her bedding around, and eat during the -1if0£ t <12

night, then stay quiet through most of the _ .
daytime. The pattern is like a square wave, y)= 1if12 £ _t <24,
quiet all day then active all night, repeating 0 otherwise.
every 24 hours:

CheckpointPlot this function (t).

To shrink the wavelet down to cover 12
hours instead of 24 hours, we scale it by a
factor of 2: (2t).

A waveletcaptures the basic pattern for a

single off-on cycle, in this case, a “square Checkpoint To see how this scaling works,

wavelet™ plug values into (2t) liket =0, 3, 6, etc.,
and then plot (2t).

CheckpointWhat scaled function would
give the wavelet pattern covering a 6-hour

This pattern is called ldaar wavelet We interval? A 3-hour interval?

can use it as a building block to find the

different subpatterns contained in an overall |, general, we can shrink the time interval in
activity pattern of the mouse, which will be half k times for the wavelet using(24).

more complicated than the simple square

wave. Suppose the mouse is sometimes We'll also need to shift the wavelet in time

more active, sometimes less active, like this: 4 put them at the right places in the overall
pattern. A wavelet that starts an hour later is
(t—1), which equals -1 for 1t< 13 and 1
for 13 t <25 (and zero otherwise).

CheckpointPlot the functions (t — 6),
(t—12), and (t — 24).

What if we combine the scaling and

Subpatterns happen over a few hours, rather ~ shifting? For example, (2(t - 12)). Look
than over a full day, so we need shorter scale at the inequalities in the

versions of our wavelet to work with: definition. This function
equals -1
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when 0 2(t —12) < 12. Divide both sides
by 2, then add 12 to obtain 12 < 18.

Similarly rearrange the second inequality
and then graph the result:

CheckpointPlot the functions (2(t — 6)),
(4(t—6)), and (4t - 12)).

We can shrink and shift our Haar wavelet
pattern to create a flexible set of building
blocks: (2t —m)). These all have a zero
average, so to capture nonzero daily
averages, we will also need a companion
function (t) called theHaar scaling
function:

CheckpointPlot (t) and (t— 24).

We can add together combinations of these
functions to make more interesting graphs.
For example, here is the graph of

6 (t)+4 (t)+ (2(t-12)+ (4t-12)):

A quick way to figure out what the graph
looks like is to write down the value on each
3-hour interval for each part, then add

together those arrays of numbers. Tfe 1
number is for 0 t< 3, the 2is 3 t< 6,
and so on.

t 0 3 6 9 12 15 18 21
6 (t) '6 6 66 6 6 6 6
4 (t) 4 -4-4 -4 4 4 4 4
(t-12) 0 0 00 -1 -1 1 1
(4t-12) | 0 0 00O -1 1 O O
Sum | 2 2 22 8 10 11 11

CheckpointUse this method to sketch the
graphof 5() +3 (t) + (2(t- 12)).

There’s an easy way to work backwards
from the values in the graph to deduce how
to express it as a combination oind
functions, which is the essential goal of
wavelet analysis. First make an array with
the value every 3 hours of the Example A
graph {is the left end of each interval):

t 0369121518212427303336394245
Ex A00O00 6106100 0 0 0 8108 14

Create a new arragf by summing each pair
of numbers and dividing by two. For
example, the'8 entry will be (6 + 10)/2 = 8.
Similarly, create a new arraly by taking

the differences of pairs T2number minus
15t number), divided by two. This process
will double the length of the time intervals
and the new arrays will be half as long:

t 0 6 12 18 24 30 36 42
ss /0 08 8 0 0 9 11
& |0 02 2 0 0 1 3

Repeat this process snto obtain arrays,
anddz, then uses; to obtainss andds:

t 0 12 24 36 t 0 24
£ |0 8 0 10 s 4 5
d |0 0 0 1 d 4 5
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CheckpointWhy aress andds the same
here? How is it connected to zero activity
during the daytime?

The arrays tell us the coefficients that go
with the functions, shifted by thevalue.

In particular,ss is shorthand for the function
4 (t) +5 (t—24), capturing the daily
average activity. We only use this last
array, but we’ll use all of they arrays.

Thed; arrays tell us the coefficients that go
with the functions, shifted by thevalue.
These capture the details of how activity is
changing around the average, with finer
details as the interval repeatedly shrinks in
half. Thusdsgives 4 (t) +5 (t—24),
which tells us that there is an off-on cycle in
activity on both days. And gives

(2(t — 36)), where we scale by 2 because
we have cut the 24-hour intervals in half to
yield 12-hour intervals. And; gives

2 (4t — 12)) + 2 (4t — 18))
+ (4(t—36)) + 3 (4(t—42)),

where we scale by 4 because we have cut
the 24-hour intervals into quarters to yield 6-
hour intervals.

Putting these together, Example A can be
written as the combination

4 (t)+5 (t-24)
+4 (t)+5 (t—24)
+2 (4(t-12)) + 2 (4(t— 18))
+ (4(t—36)) + 3 (4(t - 42)).

The terms set the daily averages as a base.

The first two terms set the basic day-night
off-on pattern, then the furtherterms add
details at increasingly finer scales. This type
of decomposition into functions at different
scales is called multiresolution analysis

Writing the activity as a combination of

and functions helps us study the mouse’s
circadian rhythms by letting us focus on
different time scales in the data. If we want
to see the basic day-night pattern in a clean
form, we use only the terms coming from
the last scales§ andds in Example A). If

we want to zero-center the activity data, we
use only the sum of the functions, which
removes the daily averages from the data.
To remove high frequency jitter, we can
discard the terms that come frorm,

which works best if the data’s time intervals
are short, e.g., a few minutes long.

In Example A, we may be interested in the
pattern occurring during each night that is
indicated byd; (the last 4 terms):

Isolating this rhythm from the overall day-
night rhythm lets us see it more clearly.

This separation also allows us to assess how
this nighttime rhythm varies from night to
night. In general, isolating the terms at
particular scales can help us see what
interesting patterns might be

hidden within the data.
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CheckpointTry out this method on the
graph of Example B below, calculating the
arraysss, d, sz, dz, Ss, andds, converting
into the and functions, and then plotting
different subsets of terms to explore what
features of the data they reveal.

t 0369121518212427303336394245

ExB/000016201216 0 0 4 4 16201620

Real data is more complicated than these
simple step functions, and so are the wavelet
functions that we use to analyze them.
However, the underlying idea is the same,
and the multiresolution analysis approach
provides a powerful framework for many
kinds of data: audio, image, seismic,
biological, etc.

To analyze data like the mouse wheel-
running activity shown above, | use a
popular type of discrete wavelet developed
by Ingrid Daubechies, a world-renowned
mathematician specializing in waveléts.
Wavelet and scaling functions need to
satisfy certain special properties, so we can’t
just choose anything as our building block
pattern. Fortunately, many wavelet families
are available to choose from. | chose the
particular Daubechies wavelet D8 after
exploring which did the best job of isolating
the circadian pattern for all the different

1See www.simonsfoundation.org/2019/06/12/making-Wetsen-
profile-of-ingrid-daubechies/

types of data | use: activity, body
temperature, and gene expression data.

Observe that the Haarand satisfy

= (2)+ (2t—24),
M) =- (2)+ (2t—24).

This pair of equations is called theo-scale
relation. The D8 and satisfy a two-scale
relation with 8 terms on each right-hand
side, where 8 coefficients play a key role
in computing thes andd; arrays:

#3$
% g !

#3$
h [.331.010.89-0.04-0.26 0.04 0.05 -0.01].

Where the Haag andd; use computations

on pairs of data values (Haar is also called
D2), D8 calculates a weighted average of 8
data values using the, then moves over 2
spots and repeats, creating new arsys
andd; + 1 that are half the length of the
previouss. The halving nature of this
algorithm requires the data to have length
equal to a power of 2 — you can add zeros to
the end if needed to make it such a length.

| hope you enjoyed this brief overview,
which only scratched the surface of the
beautiful theory of wavelets and their
applications — there’s much more

to learn if you are interested!

21



Sine and Cosine

by Whitney Souery

This Summer Fun problem set is intended for people who haven’t learned about the sine and
cosine function and are up for a challenging way to learn about them through prolvie sol

In the coordinate plane, consider a ray emanating from the origin.

Suppose that the ray makes an agls measured counterclockwise

from the positive horizontal axis. LBtbe the point where this ray

intersects the circle of radius 1 centered at the origin. By definition,

the Cartesian coordinatesfire (cos, sinx).

1. Sketch graphs of the functions soand sinx.

2. Determine the exact values of soand sinx for the following angles:
A.0° B. 90° C. 180° D. 270° E. 360° F.-90°
G. 45° H. 225° l. 60° J. 300° K. 30° L. 72°

3. Explain why cosx + sirf x = 1.

4. How are sirx and sin(x) related? How are cosand cos(¥) related?

A functionf is said to bgperiodic if there existg > 0 such that(x + p) =f(x) for allx. The
period of a periodic functiorh is the smallegb > 0 such that(x + p) = f(x).

5. What are the periods of cosnd sinx?

6. For each of the following functions, determine if it is periodic, and if so, deteitsiperiod.
A. sin(/2) B. cos(Z + 1) C. sing) D. cod(x)

7. Exploit the symmetry of a circle to prove that gassin(90° —x), wherex is measured in
degrees.

8. Express cog(+y) and sink +y) in terms of cog, sinx, cosy, and siry.

9. Use your answer to Problem 8 to give formulas that expressccas(®?sin(g) in terms of
cosx and sirnx.

10. Leta andb be constants. Determine valuex@ndd so thata sinx + b cosx = ¢ sinf + d).

11. LetP = (x,y). LetP be the image d? under counterclockwise rotation about
the origin byA degrees. What are the coordinateB oh terms ofx, y, andA?

12. Suppose that+y +z=180°. Prove that
sin(2) + sin(2/) + sin(Z) = 4 sinx siny sinz
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How High Can You Count?

by Laura Pierson and Matthew de Courcy-Ireland
What are ordinals?

You probably know that if you start counting O, 1, 2, 3, 4, ..., you could go on forever. But what
if after forever, you keep going? This give rise to ¢dnéinals.

Let’s call the next number after all the positive integefemega,the last letter of the Greek
alphabet). This is the first infinite ordinal. Now, we just keep adding 1 to get, + 2, and
so on. Then, the first ordinal bigger than all of these4s ,or - 2 (butnot2 - , for reasons
we will see later). Similarly, weget-2+1, -2+2,..., -3,..., -4, ...and eventually,

we will get 2. If we keep going, we can count to ordinals like- 3+ 7, w” .. (think
about how!).

Basically, there are two ways to build new ordinals:
Successor ordinalsare defined by adding 1 to the previous ordinal.
Limit ordinals are defined as the first ordinal bigger than an infinite increasing sequence
of smaller ordinals.

1. What should the successors of the following ordinals be?
A. 17 B. 2 C. -6+ %+5

2. What should the limits of the following increasing sequences of ordinals be?
A -2, -3, -4, .. B. , 2 3 4 ..
C. 24+ +2, 2+ +4, 2+ +6, 2+ +8,...

D. w™, w*, w", ..., where 1, 2, 3, ...IS an increasing sequence of ordinals with limit
E. 1+1, 2+1, 3+1,...,where1, 2 3, ...Iisanincreasing sequence of ordinals with
limit

3. Show that no ordinal can be both a limit ordinal and a successor ordinal.

4. Determine whether the following ordinals are successors or limitsvibg @ither the
previous ordinal or an infinite increasing sequence whose limit is that ordinal.

A +4 B. 3+ 2.2 c.w
Ordinal Arithmetic

Now that we have these things called ordinals, it would be nice if we could do thingbenith t
in general, like adding and multiplying them.

5. Before reading on, think about how you would define arithmetic of ordinals.
How can we define addition of positive integers? How about multiplication?
What would this look like if we extend it

to infinite ordinals?
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Here’s one way we can think about addition. If we want to add 3 and 5, we line up 3 things, then
line up 5 things after them, then count how many things we have total. Now if we want to add
and 5 we can try to do the same thing. We line tipings, then line up 5 things, then count

how many things we have total. To understand how to do this, let’s define what we ritig&an a |
more formally.

In set theory, the only things that exist are sets. We can have sets of setg ahsetetof sets,
and so on, but we can never have things that aren’t sets. Thus, we will define each d¢odinal
be asetcontaining exactly elements. Specificallyts elements are all the previous ordinals

We start with defining O as trempty set 0 {} = ' . Similarly, we can define
1 = {0}={"},
2 = {0, 1}={" . {"}}
3 ={05L2={.{"L{ . {"}H

and so on. We can now defineto be the set containing all the natural numbers.
6. Following this notation, write out the elements of the set 4 just using sets.

7. How can you describe the elements of the following sets? (You can writertienéd as
ordinals, not as sets, if you wish.)  A.. 2 B. 2 C.

Let's get back to addition. When we add 3 and 5, we can say we’re listing the elemieats of t
set 3, then listing the elements of the set 5 after them, like this: 0, 1, 2,0, 1, 2, 3, 4.

Now we count from the left how 0 1 2 0 1 2 3 4
many elements are in this list by ’ ’ ’ ' ' ’ '
assigning each list element to an 0 1 2 3 4 5 6 7.

ordinal, starting from O (at right).

We see that we have paired up each element of our list with exactly one ebdétherget 8, in
increasing order from left to right. Thus, we say that our set has 8 elemenu \{iant the
fancy terminology, we say that this is amler-preserving bijection of our list with the set 8,
and thus our list hasrder type 8.) Note that 8 is thget of numbers/e assigned to things on
our list,not the biggest number we assigned to a thing on our list.

Now if we want to add and 5, we do the same thing. We list the elements of the Hatn list
the elements of the set 5, then assign each thing on our list to an ordinal, countirigefleftn t

o, 1, 2, 3, .. 0, 1, 2, 3, 4
o, 1, 2, 3, .. : +1, +2, +3, + 4,
We see that we count up to+ 4, which

is the last element of the set+ 5.
Thus, there are + 5 elements in the set.
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8. Addition of integers isommutative, meaning order doesn’'t matter, i@+ b =b +a. show
that addition of ordinals isot commutative. In particular, show that 1 += +1.

9. What is 1 + 2?2 How about + ?2? What can you say in general about+ , where and
are ordinals with < ?

10. Addition of integers is alsmssociative meaning we can rearrange parentheses, i.e.,
(a+b)+c=a+ (b+c). Isordinal addition associative?

11. Show that every ordinal can be uniquely written in the fafmc, +%+w™ x €, for

somen O, where ,> ... > 1are nonzero ordinals, ..., Cy are positive integers, amdis a
nonnegative integer. (This is called tbantor normal form). How can you describe the sum
of two ordinals in terms of Cantor normal forms?

12. As we've seen, addition of ordinals is not commutative in general. However, sonasordi

do commute with each other (under addition). Can you come up with examples of ordinals that

do commute? Can you characterize in general which pairs of ordinals commuteR afdut

Cantor normal forms.)

13. Does it make sense to define subtraction of ordinals?

Now let’s go on to multiplication. Multiplication is repeated addition; for imsta
3:5=3+3+3+3+3=5+5+5,

However, in the case of ordinals, these are not necessarily the same, shausd the first one

and define - to mean copies of added together. That is, we’'ll list out the elements of the

set atotal of times, and then count how many things are on our list.

14. Under this definition, what is 2 ? You should find that it isotthe same as - 2! Thus,
multiplication of ordinals imot commutative.

15. Isittruethat - = * ? (You might want to proceed inductively, considering
separately the cases wheris a limit or a successor.)

16. Is multiplication of ordinals associative?
17. Does ordinal multiplication satisfy the distributive propertyt () - = - + - and
-(+)= - + - ? (Youshould check these two identities separately since they might

behave differently!)

18. How can you describe the product of two ordinals in terms
of their Cantor normal forms?
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How Big are They Really?

Another question we can ask about ordinals is how big they are. Of course, we alueaoiyeha
sense of their size, in that we can list them out in order and ones that come latéstratbe
bigger, so they're all different sizes. But it seems like adding one thing ndirsitei set doesn’t
make it that much bigger... after all, it’s still infinite, right?

Say we have some red balls and some green balls, and we want to know if we have the sam
number of each color. Well, one way to do this is to try to pair up each green ball with i red ba
and if we can do this without running out of either color, there must be the same number. Using
this idea, we say that two sets have the seandinality if there is some way of pairing up the
elements of the two sets without running out (called&to-one correspondencer a

bijection). This is different from how we “counted” sets before in that we no longer cark whic
order we pair up the elements.

For instance, the set of positive integers and the set of even positive integdtelsame
cardinality, because we can pair 1 with 2, 2 with 4, 3 with 6, and so on, and we’ll never run out.
Thus, these two sets have the same “size” even though one of them is a subset of the other

We call the possible cardinalities of infinite sets¢hedinals, and write( ¢, (), (+, (this is
using the Hebrew letteleph). The smallest of thesgg, is the cardinality of , and ordinals of
this cardinality are calledountable

19. Show that + 1 and - 2 are countable by putting their elements in one-to-one
correspondence with the elements of

20. Show that ? is countable.

21. Show that a countable union of countable sets is countable. (This is very similargb the la
problem.)

22. Show that the set of real numbers from 0 to 1 is uncountable. Try proof by contradiction:
suppose you’ve written them all on a list, and then find one that’s not on your list. (Thus, not all
sets are countable!)

23. Show thaall the ordinals we’ve written down so far are countable! Thus, as infinite sets go,
they're all actually really small!

Bonus Problems

We have seen that addition and multiplication are not commutative. This meansehat giv
ordinals 1, ..., n, One can form several different sums and several different products. What is
the largest possible number as a functionfHow many different permutations

give different sums? Different products? We’ll find the answers to these

guestions in the following series of bonus problems.
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B1. Draw a picture showing that -a)( +b)= 2+ -b+a, wherea andb are positive
integers. Recall that this ordinal is+ b copies of +a.

B2. Showthat (+a)( +b)( +c)= 3+ 2.c+ -b+a, wherea, b, andc are positive
integers.

B3. Find a pattern that expressest{ai)---( + an) in Cantor normal form whea, ..., a, are
positive integers.

B4. Deduce that it is possible for all permutations of any number of ordinalddalifferent
products.

It is more subtle to understand how many sums are possible. We have to understand how to
decompose an ordinal into a sum of smaller ones, and we need to understand which ordinals can
be absorbed into larger ones in a sum.

A non-zero ordinal is called “indecomposable” if it is not equal to the sum of stmcties
ordinals.

For example, 1 is indecomposable because the only smaller ordinal is 0 and 0 + 0 = 0. Another
indecomposable ordinal is because the sum of two smaller ordinals remains finite. Note that
1= %and = 1 Ingeneral, the indecomposable ordinals are the powersin€luding

infinite powers using the notion of exponentiation for ordinals.

B5. Show that any ordinal is a sum of indecomposable ordinals.

An indecomposable ordinal “absorbs” addition by any smaller ordinal on the left. fomcas
0+1=1,2019 = ,and + 2= 2 Let ()be thelargestindecomposable summand of
For instance, ( 2+ )= 2

B6. Show that the number of sums obtained by permuting three ordinals 3 is at most 5.
B7. Give an example of three ordinals where there really are five diffenest s

B8. Letf(n) be the largest number of sums that can be obtainednfanainals, for instance
f(2) = 2 and(3) = 5. Give a recursive formula for computiiig) from the previous valud§?),

£(3), ..., f(n - 1).

B9. Use your recursive formula to show that the number of sums is much less than the number of
permutations. What other patterns do you notice in the nurf{b§?s

Theses patterns in the numb&rg were found by Paul Erd. For more, see

“Some Remarks on Set Theory” by P. Esdn Proceedings of the
American Mathematical Society, Vol. 1, No. 2 (Apr., 1950), pp.127-141.
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Notes from the Club

These notes cover some of what happened at Girls’ Angle meets. In these notekidee

some of the things that you can try or think about at home or with friends. We also incl@de som
highlights and some elaborations on meet material. Less than 5% of what happercsud is
revealed here.

Session 24 - Meet 11 Mentors: Talia Blum, Grace Bryant, Adeline Hillier,

May 2, 2019 Rebecca Nelson, Kate Pearce, Laura Pierson,
Gisela Redondo, Savannah Tynan, Jane Wang,
Rebecca Whitman

Visitor: Eric Lander

Eric Lander, the

. . Some members counted vertices
president and founding

(nodes), edges, and faces of

director of the Broad various polyhedrons, eventually
Institute, stopped by and rediscovering Euler’s celebrated
gave us an inspirational formula.

biographical talk, tracing his Polyhedrons provide many paths
days from when he was & ot gxploration to pursue. While

student at Stuyvesant to Euler’s formula is well-known,
professional mathematician there surely remain many

to founding director of the beautiful, unknown, facts still
Broad Institute to be discovered about them.

Session 24 - Meet 12 Mentors: Talia Blum, Kelly Chen, Anna Ellison, Amy Fang,

May 9, 2019 Katie Gravel, Adeline Hillier, Rebecca Nelson,
Kate Pearce, Laura Pierson, Gisela Redondo,
Melissa Sherman-Bennett, Shohini Stout, Jane Wang,
Rebecca Whitman, Jasmine Zou

We held our traditional end-of-session Math Collaboration. Try your hand at solving
some of the problems.

An isosceles trapezoid’s sides are all whole numbers. Its bases have
length 200 anat. The other two sides both have length 62. How many
possible values are there &

Tree stumps are placed &t y) wherex andy are positive integers. You jump

from stump to stump, starting at (1, 1). You can jump to any stump that increases
your y-coordinate and doesn’t decrease youpordinate. How many ways are

there to jump to (3, 5)?

How many non-congruent right triangles are there whose
sides have integer length and one leg of length 1217
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Calendar

Session 23: (all dates in 2018)

September 13 Start of the twenty-third session!
20
27
October 4
11
18
25
November 1
8
15
22 Thanksgiving - No meet
29
December 6

Session 24: (all dates in 2019)

January 31 Start of the twenty-fourth session!
February 7
14
21 No meet
28
March 7
14
21
28 No meet
April 4
11
18 No meet
25
May 2
9

Session 25: To be announced...
Girls’ Angle has been hosting Math Collaborations at schools and librarieb. Qdlaborations
are fun math events that can be adapted to a variety of group sizes and skillfevetre

information and testimonials, please visitw.girlsangle.org/page/math_collaborations.html

Girls’ Angle can offer custom math classes over the internet for snoalpgion a wide range of
topics. Please inquire for pricing and possibilities. Engailsangle@gmail.com

A heartfelt Thank You to Monica Concepcion, Rachel Gesserman, and all employees at the
Broad Institute for giving Girls’ Angle a marvelous, inspiring home for the past thres!year
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fill out the ClutiEnrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Plelase addout your relationship to
mathematics. If you don'’t like math, what don’t you like? If you love math, whavddoye? What
would you like to get out of a Girls’ Angle Membership?

The $50 rate is for US postal addresses oRly: international rates, contact us before applying.
Please check all that apply:

Enclosed is a check for $50 for a 1-year Girls’ Angle Membership.

I am making a tax free donation.

Please make check payable@®ixls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiltangle @gmail.com

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and excitg math can be! Make new friends!

The club is where our in-person mentoring takes place. At the club, girlsiweckly with our mentors
and members of our Support Network. To join, please fill out and return th&@alhment form.
Girls’ Angle Members receive a significant discount on club atteceléees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each member as igliéha@ind design
custom tailored projects and activities designed to help the mempenie at mathematics and develop
her thinking abilities. Because we believe learning follows nayundien there is motivation, our
mentors work hard to motivate. In order for members to see math as a liviniyecsabject, at least one
mentor is present at every meet who has proven and published original theorems

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the members how and for what thaethudeach
member of the Support Network serves as a role model for the membersheFoipety demonstrate that
many women today use math to make interesting and important contributionsetg.soci

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We believe that when dagrsiafiorts are
actually used in real life, the motivation to learn math increases.

Who can join? Ultimately, we hope to open membership to all women. Currently, we are openilgrima
to girls in grades 5-12. We welcorak girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math or suffer fedmanxiety, math is worth
studying.

How do | enroll? You can enroll by filling out and returning the Club Enrollment form.

How do | pay? The cost is $20/meet for members and $30/meet for nonmembers. Members get an
additional 10% discount if they pay in advance for all 12 meets in a sessitsmaré&iwelcome to join at
any time. The program is individually focused, so the concept of “catchinglupheigroup” doesn’t

apply.

Where is Girls’ Angle located?Girls’ Angle is based in Cambridge, Massachusetts. For security
reasons, only members and their parents/guardian will be given the esictiaf the club and its
phone number.

When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendar detailsepleas
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will be like®irls’ Angle activities are tailored to each
girl's specific needs. We assess where each girl is mathemastiodlihen design and fashion strategies
that will help her develop her mathematical abilities. Everybodys$eaath differently and what works
best for one individual may not work for another. At Girls’ Angle, we ang sensitive to individual
differences. If you would like to understand this process in more detail, pleaseigim
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Are donations to Girls’ Angle tax deductible?Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we rely
on public support. Join us in the effort to improve math education! Please oualkdopation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has a Ph.D.
in mathematics from MIT and was a Benjamin Peirce assistant proféssattematics at Harvard, a
member at the Institute for Advanced Study, and a National Science Foundatidoctoral fellow. In
addition, he has designed and taught math enrichment classes at BostonisiMiiSeience, worked in
the mathematics educational publishing industry, and taught at HCSSiM. &eoluateered for

Science Club for Girls and worked with girls to build large modular origaajects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle realizeds goal of helping girls develop their
mathematical interests and abilities?Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, founder and director of the Explonator

Yaim Cooper, lecturer, Harvard University

Julia Elisenda Grigshy, professor of mathematiast@n College

Kay Kirkpatrick, associate professor of mathematidsiversity of lllinois at Urbana-Champaign

Grace Lyo, Instructional Designer, Stanford Uniitgrs

Lauren McGough, graduate student in physics, Pramcgniversity

Mia Minnes, SEW assistant professor of mathemalti€& San Diego

Beth O’Sullivan, co-founder of Science Club for I&ir

Elissa Ozanne, associate professor, Universitytah$chool of Medicine

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Liz Simon, graduate student, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, associate professor, University ofshiagton

Karen Willcox, Director, Institute for Computatidriangineering and Sciences, UT Austin

Lauren Williams, professor of mathematics, Harvdrdversity

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as
their desire to help others learn math. But does it really mattethat girls be instructed by people
with such a high level understanding of mathematicsWe believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tacktg/field regardless of the level of mathematics
required, including fields that involve original research. Over the destithe mathematical universe
has grown enormously. Without guidance from people who understand a lot of math, thihask is
student will acquire a very shallow and limited view of mathematicshenghtportance of various topics
will be improperly appreciated. Also, people who have proven original theamashesstand what it is
like to work on questions for which there is no known answer and for which tlgitermot even be an
answer. Much of school mathematics (all the way through collegalvesvaround math questions with
known answers, and most teachers have structured their teaching, whetheustnscnot, with the
knowledge of the answer in mind. At Girls’ Angle, girls will learn tetgies and techniques that apply
even when no answer is known. In this way, we hope to help girls become solvergatfuthsolved.

Also, math should not be perceived as the stuff that is done in math klaksad, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can show girls how méghantreo their
daily lives and how this math can lead to abstract structures of enormenesi and beauty.
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Girls’ Angle: Club Enroliment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following peopl# ¢ allowed to pick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, suclargies, that you'd like us to know about?

Photography ReleaseOccasionally, photos and videos are taken to deotiiand publicize our program in all media forms Wil
not print or use your daughter’s name in any waywe have permission to use your daughter’s imagéhese purposes?yYes No

Eligibility: Girls roughly in grades 5-12 are welcome. Althlowge will work hard to include every girl and toremunicate with you
any issues that may arise, Girls’ Angle reservediilcretion to dismiss any girl whose actionsdigeuptive to club activities.

Personal Statement (optional, but strongly encouraged!)}Ve encourage the participant to fill out the
optional personal statement on the next page.

Permission:| give my daughter permission to participate in Girls’ Angle. | haael and understand
everything on this registration form and the attached information sheets

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
Enclosed is $216 for one session | will pay on a per meet basis at $30/meet.
(12 meets) _ )
I’'m including $50 to become a member,
| will pay on a per meet basis at $20/me and | have selected an item from the left.

| am making a tax free donation.

Please make check payable@xls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with you to ths fireet.
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Personal Statement (optional, but strongly encouraged!)this is for the club participant only. How
would you describe your relationship to mathematics? What would you like to gdtymuir Girls’
Angle club experience? If you don'’t like math, please tell us why. If you lotle, piaase tell us what
you love about it. If you need more space, please attach another sheet.

Girls’ Angle: A Math Club for Girls
Liability Waiver

[, the undersigned parent or guardian of the following minor(s)

do hereby consent to my child(ren)’s participation in Girls’ Angle and do foesceirrevocably release Girls’
Angle and its directors, officers, employees, agents, and volunteers (eelletlie “Releasees”) from any and
all liability, and waive any and all claims, for injury, loss or damagdydag attorney’s fees, in any way
connected with or arising out of my child(ren)’s participation in Girls’ Angleetlver or not caused by my
child(ren)’s negligence or by any act or omission of Girls’ Angle orddrilie Releasees. | forever release,
acquit, discharge and covenant to hold harmless the Releasees from any andsatifcactson and claims on
account of, or in any way growing out of, directly or indirectly, my minor chitg{separticipation in Girls’
Angle, including all foreseeable and unforeseeable personal injuries or prd@erige, further including all
claims or rights of action for damages which my minor child(ren) may agaiiher before or after he or she
has reached his or her majority, resulting from or connected with his or herpgaditin in Girls’ Angle. | agree
to indemnify and to hold harmless the Releasees from all claims (in other worlmlianse the Releasees ar
to be responsible) for liability, injury, loss, damage or expense, including attofeeygincluding the cost of
defending any claim my child might make, or that might be made on my child(bemalf, that is released or
waived by this paragraph), in any way connected with or arising out of my ehildg(participation in the
Program.

Signature of applicant/parent: Date:

d

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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