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An Interview with
Kristin Lauter, Part 1

Kristin Lauter is a mathematician and the
head of the cryptography group at Microsoft
Research She received her doctoral degree
in mathematics from the University of
Chicago. She is an Affiliate Professor at the
University of Washington in Seattle.

This interview was conducted in
person at the University of Washington by
University of Washington graduate student
Ke Huang.

Ke Huang: How did you first become
interested in math, and what was one of the
first mathematical things that caught your
interest? Did somebody make a big impact
in your early math life?

Kristin : | actually really loved math from a
very early age. | used to do story problems
with my dad in the car when we were
driving, and | always really liked it. What
was great for me was that, in school, | had
teachers who allowed me to work on my
own at my own pace. So | zoomed ahead
through years of math from elementary
school and junior high school. That enabled
me to graduate high school when | was 15.
After high school, | went to the University
of Chicago. The University of Chicago is a
great place, especially for young students.
They test and place all of their incoming
students into the appropriate level of
calculus or advanced math, and | was put
into honors calculus, taught by Jill Pipher,
and it was a great start.

Ke Huang: Wow, that’s incredible. Can
you tell us more about the story problems
you did with your dad?

1 Dr. Lauter and Microsoft Research have been a big
supporter of Girls’ Angle’s Math Collaboration
initiative and we thank them for their generosityla
financial support over the years.

Kristin : When | was quite young, we had a
summer home in the woods of Northern
Wisconsin. It was about a two-hour drive to
get there. During those rides, my dad would
give me story problems. | enjoyed them so
much. They were essentially algebra
guestions, like a grocer has 15 more apples
than lemons and the number of lemons is
two-fifths the number of apples, how many
lemons does the grocer have? But he always
said that | would answer the question almost
before he finished asking it, which I think is
really funny because that’'s not necessarily a
good strategy, to answer before you know
what the end of the question is, but I'd try to
predict what he was asking me.

Ke Huang: It sounds like you got them
right! Was your dad a mathematician?

Kristin : No, not at all. He was a Dean of
Students at a college, so he really liked
counseling and mentoring students. He was
at Lawrence University in Wisconsin.

Ke Huang: What drew you to work on
cryptography?

Kristin : So, when | was teaching at the
University of Michigard, | taught courses on
coding theory and number theory, and as
part of those courses, | included an
introduction to cryptography. The students
loved that part of the class, so it was clear
that it was something that captured their
imaginations. Of course, | thought that it
was a pretty neat application too, but one
thing that really impressed me is that the
graduate students in engineering that
attended the class had a lot more knowledge
about the real world than | did. They knew
what was going on in industry. At that time,
there was kind of a revolution going on in
coding theory with the introduction of the

2 Transcription by New England Transcript Services
of Boston, Inc., with assistance from Peter Park.

3 Kristin was a Hildebrandt Assistant Professor of
Mathematics at the University of Michigan from
1996-1999.
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The Needell in the Haystack

. Blended Thanksgiving Dinner and Compressed Sehsing
¢ by Deanna Needell | edited by Jennifer Silva

Thanksgiving is coming up, and in my family this is a big holiday. We

i spend two full days cooking everything from gluten-free stuffing and

i i mashed potatoes to pecan pies and my favorite gelatin dessert, “silver
slip,” not to mentlon two large turkeysPicture this feast where painstaking effort has gone into
cooking and preparing everything just right. Then, imagine Uncle Rick coraing, aaking all

of this perfectly prepared food, and throwing everything together into a large ihlé¢thole

would you react? Perhaps, after some initial cringing, you might feel Wkasiawasteto have
prepared the food so meticulously if it was just going to be blended all togetheemdith& ou
probably could have saved a lot of time if you had just thrown all the ingredients e tider
initially, right?

Metaphorically speaking, this is exactly what most modern digital eeanuer. Take the
camera in your phone, for example. When you take a photo, it measures the lighyiatensi
every single “pixel” in the photographic region, only to discard most of that infanmathen it
compresses the image for storage. We will refer to this compressed versiomwdheas the
measurementsThis seemingly wasteful acquisition paradigm is what led to the fieldsthain
known ascompressed sensimg compressive signal processiffg 5]. As the name might
suggest, the main goal is to acquire the measurements directly in their seeolgicem, without
the need to directly measure each pixel first. This eliminates waste&jlénergy and cost,
potentially saving tremendous resources in many applications. For instancejgalnmeaging
it will lead to a significant reduction in scan time; this is especialpontant in situations such
as magnetic resonance imaging (MRI), where the patient often has to renfeatiypstill for up
to 40 minutes per scan. In other types of imaging such as hyperspectrabirmagiere
“photos” are being taken using light outside the visible spectrum — this leadgtofigant
reduction in the number of photon diodes needed, which can reduce cost in some very expensive
technologies.

So how do we do compressed sensing, and what does it entail? The first ingredient we
need is a low-dimensionalodelthat we can use to argue that compression without serious loss
of information is even possible. One mathematical model that has gained a éandfattention
is the use o$parsity Sparsity captures the idea that high-dimensional signals often contain a
very small amount of intrinsic information. Using this notion, one may design effioient |
dimensional representations of large-scale data, as well as robust ret@mrstmethods for
those representations.

We will denote our signal of interest byl  "; f may be a large data vector, or the pixel
intensities of a large image, etc. We say tlss-sparsevhenf has at moss non-zero entries,
written || f ||, £s. Sparsity plays an important role in compressive signal processing because
compressible signals are those which are approximated well by spards. sigrgeneral, a
signal can be sparse in this sense or it can be sparse with respect to some atlownorm
overcomplete basis, in which cdseDx for some matrix “dictionaryD and sparse vectar
Fortunately, many important signals in practical applications are known to haa#esb
sparsifying dictionaries. For example, natural images can be spaagedgented using a

1 This content supported in part by a grant fromiWdéorks.
2 My husband and his brother sometimes call thegellidg” turkeys and have a battle to see whoseti®b



waveletbasis® The details of these bases will not be important for this article; just knowing tha
they exist and give sparse representations for interesting signals ik erarghe rest of the
article, we will simply assume thBtis the identity matrix, so th&t=x is a sparse vector itself.

[ ] i L
x — =Dy
CoefTicient Signal Compressed
Domain Donain Sensing

Dromain

Figure 1. Summary of the compressive signal psingsprocess. Her® is a Haar wavelet transformation.

Given a compressible signal, we acquire the measurements by applying amptiaga
matrix Al ™", wherem n(we wantm n sincemwill be the size of the compression and

m

nis the original dimension). The measurement vector can then be writien A$ + el ,

whereeis an arbitrary noise vector which usually cannot be avoided in practice. The
compressive signal processing problem is to reconstruct an arbitrary cdbipregmalf from
these noisy samplesing a computationally efficient algorithnThat is, given knowledge of the
measurementgand the measurement matAxwe wish to (approximately) reconstruct the
signal vectoff.

This is challenging for several reasons. First, the noise veattited to the
measurements means we are unlikely to have any hope of ever exactly soltingbeven
ignoring the noise for a moment, the systiemAfis a highly underdetermined systemmof
equations im variables. Sincen  n, the matrixA maps many vectors to the zero veétso,
there isn’t a unique solution to the system; in fact, giwehere are infinitely many vectoxs
that satisfyy = Ax. However, all hope isn’t lostt Remember, we aren’t searching for just any
solution. Rather, we seeksparsesolution. This means we seek a solution that will have many
zero entries, although we don’t know which entries are zero, nor do we know the magnitudes of
the other entries. The overall process is illustrated in Figure 1, wheeseweesoriginal image
(center), its sparse representation (left — black pixels represent zei®imadge), and its
compressed version (right).

3 There are many kinds of wavelets, including DabiEwavelets, pioneered by the amazing profesgpid
Daubechies. | encourage the interested readerdglg her name and watch one of her accessiblenéorahative
lectures. You can also read a 5-part intervievialwér in thisBulletin, Volume 1, Number 6 and Volume 2,
Numbers 1-4.

4 n the parlance of linear algebra, the ma#ikas a large null space.



Methods in compressed sensing

Let us now turn to methods for solving the compressed sensing problem. Recall thatahe a
problem is to solve the noisy underdetermined linear sygtedf + e for ans-sparse vectar.
Two key questions must be asked: (i) what types of measurement matcaesve use? and (ii)
how do we actually solve the problem?

Let's begin by first ignoring the noise, thatess 0. Let’s suppose we can get our hands
on a matrixA that is one-to-one on alsparse signals, or equivalently, that there issgparse
signal thatA maps to the zero vector. Then, consider solving the problem by searching for the
sparsessignalx that matches the measurementsviathematically, our solution isdefined by:

1) x argmin|x|, such thaf\x=y.

Recalling thaft, the desired solution, gsparse, it follows immediately that this problem
gives us what we want, namely txat f. Woohoo! So have we finished talking about saivi
the compressed sensing problem? Unfortunatelyingp(1) in practice is NP-Hard, meaning
that we do not know of any polynomial time algomitibo solve it. This makes it very
impractical — often impossible — to use in practi&» although this idea gives us a nice result
theoretically, we need a different approach if vantito use compressed sensing in practice.

So what shall we try next? We first remark thattbason (1) is hard to solve in practice
is that the “ls-norm™ is not convex. Indeed, draw the set of all 1-spaectors in two
dimensions and note that this set is not convepallréhat a set is convex if the line connecting
any of its two points is also completely contaiimethe set). It turns out that so-called convex
programming methods are quite efficient for solvogvex problems, so if we could find a
convex formulation of our compressed sensing propthis would yield a practical solution.
You may recall from the previous installment oftkeries that we define the-horm || - }| for

0<p ,byl|Kb ( i)gp)”p, and we define theptball as the set of all vectors whose

Lp-norm is less than or equal to 1. Note that as 0, the L-norm approaches the-horm,

giving it its name. Now try sketching the-hall for p = 1/2 in dimension 2. Is it convex? Your
answer should be no, as it looks like a diamondsetsides have been “pinched in.” What about
for p=2? There your answer should be yes, as yothgetircle, which is convex. So here is
the penultimate question: What is the smallestevaly for which the L-ball is convex? After
some experimenting, you might see that 1, which gives the diamond, is the smalfekir

which we get a convex ball. So the ultimate qoestiecomes this: Can we use thenbrm to

solve the compressed sensing problem? In othetsyamould the small adjustment of (1) work:

(2) x argmin|x|, such tha\x=y.

Let's draw a few pictures to get some intuitionnc® this article is printed on two-
dimensional paper, we will begin by drawing in tdimensions. So, let's consider a 1-sparse
vectorf in two dimensions, for example the one that is drawFigure 2 (left). We know thét
is a solution tgy = Af, which means that it lies on the line describedbyAx =y }; see Figure 2
(right). The solution to (2) seeks the vectahat lives on this line and has the smallest
Li-norm. To find such a vector, we can draw (scalad)alls starting small and growing larger
until one intersects the line. The point on tine hith the smallestitnorm will be precisely

5 The "LO-norm" is not actually a norm, but is comityo(yet inappropriately) called this in the liteuee.
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little space for ice cream in the cone, but lotsgrce for your hand to move aroufdyhis
means that if we were to randomly orient the Iw&i¢h in high dimensions becomes a
hyperplane), the likelihood that we would obtainistersection like that drawn in Figure 4 is
extremely small Therefore, if our signdlis sparse in high dimensions, and if we randomly
design the measurement matixthus, the hyperplane is random), then we can2js (
recover the desired solutidbrvith high probability. This claim is rigorouslyqvren in several
works [2, 3, 6, 1] that show, for example, tAatan be taken to be a matrix with Gaussian
entries ananon the order o log(n). Notice that such values ofprovide significant
compression since the size of the compressmig only logarithmic in the dimension

This is a deep and non-trivial result. So whilis th sinking in, let us settle perhaps the
last remaining seed of doubt by the astute obsenaenely that we have ignored the noise term
in the measuremenys= Af + e. When we introduce noise, we no longer “know” éxact
hyperplaney = Af, but we know thatlives in some “tube” whose radiusris |f|b. This is
visualized in Figure 5. However, we may play sasne argument with the tube instead of the
line; notice that although we may not “hit” the epointf, we will hit some point nearby, since
the tube and theitball have only a small region of intersection.isTis also proved rigorously
[2], and shows that with the same assumption omigieix A, f can be reconstructed to within an
accuracy that scales like|p.

The takeaway message

Compressed sensing demonstrates that efficientosie#xist that allow one to reconstruct a
signal or image from compressed measurements.afpleations are abundant and range from
medical and hyperspectral imaging to wireless comoations and environmental sensing. The
underlying mathematics that makes this all possg$®mme of the beauty and surprise of high-
dimensional geometry. So next time you want toaggtiorter MRI or take a cheaper
photograph, think of your friend, the spiky L1-ball
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By Anna B.

Mathematics is a journey of discovery. As mathaaats take this journey, they follow many wrong
turns, believe many incorrect facts, and encountany mysteries. Out of these twists and turns comes
the reward of truth and understanding. Howeveypifl look at math books, you might get the impressio
that mathematicians rarely err. In this column, Argives us a peek into her mathematical process of

discovery, bravely allowing us to watch even assthmbles.

Anna convinces herself of a claim made in Deannedsli¥s article on page 10.
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Umbrellas, Part 1

by Ken Fan, Milena Harned, and Miriam Rittenberg

While doing math together, we stumbled
upon the following question: In a
coordinate plane, for fixed whole number
n, what points can you reach if you start at
the origin and take precisefysteps,

where each step is of unit length and has a
nonnegative vertical displacement?

Let’s call the set of points reachablenisuch step&)n. The figure above shows three reachable
pointsP, Q, andR in Us, together with a way to get to each point fromahgin O (0O, 0) using
the allowed types of steps. Because every stepmaus nonnegative vertical displacement, it is
impossible to reach any point in the lower haltre plane. And since every step is of unit
length and the straight line path is the shortestvben two pointdJ, must be contained in the
circle of radius centered aD. Are all points in the upper semicircular disdtueé circle of

radiusn and centered & reachable? As we will show, the answer is no.

As an aside, if the restriction on the directiorired steps is dropped, so that we can take our
steps in any direction we wish, then all pointshef circular disc of radius centered aD are
reachable, except wher= 1. Whem = 1, only the boundary of the unit circle is reale.

Suppose oukth step is a unit step in the direction(given as an angle, in radians, as measured
counterclockwise from the positive horizontal axiSjnce we require that every step have
nonnegative vertical component, we know that @  forallk=1, 2, 3, ...n. With thekth

step, we translate by (cog sin k). ThereforeU, is the set of points in the coordinate plane of
the form

(cos 1+cosS 2+C0OS 3+...+COSp, SIN 1+SiN 2+sin 3+...+sin y).

If you know about complex numbers, another wayasctdbeU, is as the set of points in the
complex plane of the forr@® + &z + & + + & where0 « forallk=1,2, 3, ...n

The casen=1

Whenn =1, you may only
take one unit step froM, so
U is the upper half of the
unit semicircle centered ax
(including the endpoints (1,
0) and (-1, 0)). See the
image at right. (When we
say that a semicircle is
centered at a poil@, we
mean that is the center of
the circle that has the
semicircle as an arc.)

14



The casen =2
Let’s analyze the case= 2 in detail. What are all the points within teteps ofO?

After one step, we end up at some pé&int
onU:. FromP, the points we can reach
with our second step form the upper half
of a unit semicircle centeredRt In

other words, the points &f. are those
swept out by a unit semicircle whose
center follows the semicircular dh. |If
you sketch this, you'll get a region that
looks like the shaded region at right. It
consists of a semicircular disc of radius 2
centered a® with two semicircular discs
each of radius 1 centered at (-1, 0) and (1, 8peetively, removed. More precisely, let

SZ:{(X!y)ly O!X2+y2 4!O(+1)2+y2 11and((_1)2+y2 1}

It appears thdt), =S. Let’s prove this rigorously.

First, suppos® is inUy, soP = (cos +cos ,sin +sin ), where 0 . We will verify

that each of the defining inequalities for theSedre satisfied in the order that we wrote them in

the definition.

First, since sin and sin are both nonnegative, so is the vertical coorediéP.

Next, we compute

(cos +cos )?+ (sin +sin )>=cog +2cos cos + cog +sirt +2sin sin + sirt

=2+2c0s cos +2sin sin
=2+2cos(—- ) 4.

Also

= 3+ 2cos +2co0Ss +2coSs cos +2sin sin
=1+2(1+cos)(1+cos)+2sin sin 1,

(cos +cos + 1Y+ (sin +sin )?
where the last inequality follows since 1+ co4 + cos , sin , and sin are all nonnegative.
Similarly,

(cos +cos — 1Y+ (sin +sin )> = 3—-2c0s —2cos + 2c0S COS + 2sin sin
=1+2(1-cos)(l-cos)+2sin sin 1,

where, this time, the last inequality follows besad — cos, 1 — cos, sin , and sin are all
nonnegative.

Since the four defining inequalities §f are satisfied, we see thas is contained ir%.

15



Now suppos® is inS. We will show thaP is inU2. We'll think of coordinates as position
vectors in this argument. Suppd3e (a, b). We exploit the mirror symmetry (about the
vertical axis) by assuming thais nonnegative. IP = O, then we can see thatis in U2 by
expressing as (1, 0) + (-1, 0). So assume tRas not the origin. If the distance Bffrom the
origin is 2 units, then we can see tRas in U2 by writing P = P/2 + P/2. So assume further that
P is strictly within the circle of radius 2 centeratD.

We first show thaP = X +Y whereX
andY both have unit length. BecauBe
is within 2 units ofO, but not equal to
O, we know that the unit circles
centered aD andP intersect in exactly
two points, which we’ll labeK andY

in such a way that the vertical
coordinate oK does not exceed that of
Y. ThenO, X, Y, andP form the
vertices of a rhombus with side length
1. Since all rhombi are parallelograms,
we know thaP =X +.

Next, we will show that the vertical coordinateXois, in fact, nonnegative. This is equivalent to
showing thambXOP mbPOZ whereZ = (1, 0). Sincé is in the first quadrant, this is, in
turn, equivalent to showing that co®XOP cosmbPOZ Observe that casb XOPis

Ja®+b? /2 (the diagonals of a rhombus are perpendiculactnss) and cosPPOZis

alJa2+ 1. Therefore, we desire thafa? +b2 /2 a/~/a2+ 2. This can be rearranged to
a+b?> 2a or@—1F+b®> 1, whichis true foPin S. ThereforeP is inU, as desired.

A symmetric argument gives us the same conclusibnd in the second quadrant.
SinceS is contained iJ2 andU: is contained ir%, we must havé, = S.

The general case

In general, defin&, to be the region in the coordinate

plane inside the upper half of the circle of radius

centered at the origin, but outside a row of umdles

centered at points along the horizontal axis. More

precisely, define

S {(xy]y 0,x+y? nPandk—n+1-X)>+y> 1fork=1,2,3,..n}

The illustration showSs. The shape d& reminded us of the profile of an umbrella, heree t
title.

In the sequel, we will prove thek, = S, by induction om. Can you prove this before the next
issue appears?

16



Learn by Doing

Cardinality
by Michael Kielstra | edited by Amanda Galtman

What is the size of the biggest set?

By “size,” | do not mean physical size. Insteaah feferring to a measure of the quantity of
elements that the set contains. For examplegtdwith a single element are to be considered
the same size, whether that element be an elephanpoint in space.

If we consider only finite sets, we can determiize y counting elements. For example, the set
of capital letters in the alphabet has 26 elemaatsye could say that it has size 26. Since every
whole number can be increased by adding one tiweite is no “biggest” finite set. Any finite set
can be made bigger by tossing a new element into it

But what happens if we include infinite sets? A&, we frequently work with them. For
example, consider the set of integers, the seblghpmials, the set of polygons, the set of dots-
and-boxes starting configurations, the set of nmatiteeal equations, and so on. Is there such a
thing as a biggest infinite set? How can we ew@anpare the size of one infinite set to another?
Indeed, how can we even measuresizeof an infinite set? Should we simply say that an
infinite set has infinite size and be done with it?

Suppose&s andT are infinite sets. We might be tempted to say Tha bigger tharSif Sis a
proper subset dF, in other words, if every element 8is an element of and there exist
elements inT that are not its. For example, iSis the set of even integers anhds the set of all
integers, theisis a proper subset 3f Should we say is bigger thars?

One objection to defining “bigger” in this way Izt it isnot compatible with our notion of

“bigger” for finite sets. When we say that onatBrset is bigger than another, we do not require
that the smaller set be a subset of the biggerlsstead, we count the number of elements in
each set to determine its size, and then comparsizbs, not the sets. That is, our notion of size
is not related to the nature of the elements irs#te Instead, we regard each element in a set as
an equal contributor to the set’s size. If, f@tance, we were to swap out an element in a set for
another, we would consider the resulting set ttheesame size as the original.

So, how can we extend the notion of size to irdisigts? One frequently used approach to
extending a notion to a new context is to redetfiteenotion in a way thatanbe applied in the
new context.

1. We'll think of a finite set as a bag containitgyelements. You're given two finite sets. Can
you think of a way to decide which set is biggeifdney are the same sizgthout counting the
number of elements in eachagfThat is, can you compare the sizes of thevadteut having to
concern yourself with keeping track of a number?)

(Spoiler Alert!) One way to solve Problem 1 ig¢ach into both bags, pull out one element
from each, and repeat until one or both bags haveare elements to remove. If both bags
empty at the same time, they had to be the sarae therwise, the one which emptied first is
smaller.
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Another way to put it is that if you can establésbne-to-one correspondence between the two
sets, then the sets have the same size. (A ooeet@orrespondence is a pairing of the elements
of one set with the elements of the other in sualaythat each element is paired with exactly
one element of the other set. In the previousgraph, elements removed at the same time form
a pair.)

The beauty of using a one-to-one correspondenestéblish that two sets are the same size is
that this notion can be applied as is to infindess

2. Show that the set of positive perfect squarésasame size as the set of positive intege)s. (!

(Spoiler Alert!) The set of positive perfect sgemand the set of positive integers are both
infinite sets, and, in fact, one contains the ottgut we've already seen that being a proper
subset is not a good way to compare the sizes®f sestead, we can pair the positive intager
with the perfect squan® to establish a one-to-one correspondence betvese two sets.

3. Let be the set of positive integers and ldie the set of integers. Show that and
are the same size.

Any set that can be put into one-to-one correspacel@iith the set of positive integers is said to
becountably infinite. If a set can be put into one-to-one correspocel@nth a subset of the
positive integers, it is said to lbeuntable You have just proven that the set of perfecaseg!
and set of integers are both countably infinite.

We have declared that two sets have the samef simdrielements can be put into one-to-one
correspondence with each other. Two such setsagilé¢o have the sancardinality . But for

this notion to be a reasonable measure of theo§iaeset, we would want this measure of size to
enjoy the following properties:

Property 1. (Reflexivity) Every set has the sanrdicality as itself.

Property 2. (Symmetry) If sét has the same cardinality as Bethen seB has
the same cardinality as &t

Property 3. (Transitivity) If seA has the same cardinality as Beaind seB has
the same cardinality as setthen sefA has the same cardinality as €et

(In other words, we want the relationship that sets have the same cardinality to be an
equivalence relation)

4. Show that our definition of cardinality enjoysthree of these properties.
Are all infinite sets countable?

5. LetSbe the set of infinite sequences}{ =1, 2,3 .. wherea can be 0 or 1 only. Show tiats
not countable.Hint: Suppose, to the contrary, ti&is countable. Then we can establish a one-
to-one correspondence between elemenganfd the positive integers. In other words, we can
form a sequencg, , S, ..., such that every element®fs equal to one of th&. (Here, each
scis an infinite sequence of 0's and 1's.) For egkays: might be the sequence that begins with
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a 1, but then every term after is 0, andhight be the sequence that begins 0, 1, but therye
term after is 0. Whatever tilsespecifically are, define a sequentg{= 1, 2, 3, ...by settingoi to 1
if the ith term ofs is 0, and O if théth term ofs is 1. Then Bi}i=1, 2,3, ..is a sequence Band

must be equal te for somek. Whichscis equal to Bi}i=1,2,3 .7

The argument implied by the hint of Problem 5 iswn asCantor’s diagonalization
argument, after Georg Cantor. A set that is not countébkaid to beincountable

Let0 x<1 be areal number. If we expresa binary, we get a sequence of 0’'s and 1's by
looking at its binary digits after the binary pointhis is almost the situation of Problem 5. The
difference is that some numbers do not have a erfiquary expression. For example, as binary

numbers,0.01 = 0.1, whereas in Problem 5, the sequences Q,11,.1 and 1,0, 0, 0, ... are
distinct. Nevertheless, Cantor was able to addhesse technicalities and use his
diagonalization argument to show that the setafmembers is uncountable.

Try your hand at determining the cardinality ofsset

6. Is the set of rational numbers countable?

7. Is the set of quadratic polynomial€ + bx + ¢, wherea, b, andc are integers, countable?
8. Is the set of polynomials with rational coeféicts countable?

9. Is the set of all roots of polynomials with cettal coefficients countable?

10. LetP be the set of ordered pairss ¥), wherex andy are real numbers. Show thahas the
same cardinality as the set of real numbers.

11. Tweak your solution to Problem 5 to show thatget of real numbers is uncountable.

12. LetSbe a set. Thpower setof Sis the set of all subsets 8f Show that the power set 8f
does not have the same cardinalitysas

13. Unlike Problem 12, given a countably infiniex S letF be the set of afinite subsets o&
Show that andS have the same cardinality.

14. LetA« be a countably infinite set for eaklr 1, 2, 3, .... LeB be the union of all thAx.
Show thaB is countable.

15. Construct a partition of  into infinitely many infinite sets. (A partitioof a setSis a
collection of subsets @ with the property that ever elementis in precisely one of the
subsets in the collection.)

We close with the Schréder—Bernstein theorem, whiebs an often handy way to prove that
two sets have the same cardinality.

16. (Schroder—Bernstein) L8tandT be two sets. An injective function is a functibat maps
distinct elements to distinct elements. Suppoaktttiere is an injective functidrirom Sto T
and an injective functiog fromTto S Prove thaSandT have the same cardinality.
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Stacked Circles, Part 4

by Ken Fan | edited by Jennifer Silva
Jasmine: This is painful!

Emily: 1 wonder why arithmetic and geometric sequesnof circles worked out so nicely, but
this harmonic sequence eludes us.

Jasmine: | can't think of another way to look as goroblem, so | have no insight into why one
works out and another doesn’t, except to say thainvwstacking circles into an angle, similarity
glues everything together.

Emily: Actually, this quest for a nice container #ostack of circles whose radii are in harmonic
progression is a bit odd. Still, let’s at the viagst check to see if the logarithmic containexsdo
the job or not.

Jasmine: Okay. How do you propose we do that?

Emily: | guess we can write a computer program tledermines the radius of the next circle in a
stack. Though the program will have inherent eimats computations, | have a feeling that we
will still be able to see that the sequence cabedhe desired harmonic sequence. You look
sad, Jasmine!

Jasmine: Sorry. amdisappointed that we’re contemplating writing anpaiter program to get

an anticipated negative result. Plus, if we goulgh the process of writing a computer program
— even if we do learn that the logarithm isn’t thesired container — it probably won’t give us
further insight into the problem.

Emily: You're right, and | understand. But thingel stuck, and | don’t think the computer
program will take long to write. Besides, it wilbpefully tell us that the logarithm doesn’t
work. I'm dying to know!

Jasmine: All right. Let’s write the program.

Emily: Great! It helps us that the center of tirele and its radius are monotonically related. As
the circle rises up the vertical axis, its radibsrks.

Jasmine: Yes, that's good. It means that for eadlus, there is a unique circle. But I think
what we need is an algorithm that, given one circlhe stack, computes the next.

Emily: So how about this: Leb be the radius of the given circle. We then hajwepeatedly
until we find a circle that is fully above the giveircle. That would mean we’ve overshot the
radius of the next circle in the stack. That is,letr1 =ro/2 and check if the circle with radius
is too high. Ifitisn’t, we let> =r1/2 and see if the corresponding circle is too hig¥e keep
going until we findrn, the first circle with radiuso divided by a power of 2 that is too high. We
then letr, + 1 be the average of andr,-1. If the circle with radiusn + 1 is too high, we letn + 2

be the average of -1 andrn + 1. Otherwise, we lat, + > be the average of andr,+1. That is,

we extend the sequence of radii by picking the nadius to be the average of the last two
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values that most tightly sandwich the desired mdilhis way, we will double the accuracy of
our estimate with each iteration, quickly exceedhmgcomputational accuracy of the computer.

Jasmine: That sounds fine to me. We need the iequaé found last time that related the radius
of a circle to the vertical coordinate of its centelere it is:

- N+ + N%+ 4r2 Nln\/' N% Nv N%* 4r?
2

2

c=-

whereN is a fixed parameter that scales our logarithmaply in the vertical directiom,is the
radius of the circle, anclis the vertical coordinate of its center.

Emily: We can leavél as a parameter in the program. I'm thinking fe purposes of the
program, it might make sense to expreske this:

- N+ +/ N2+ 4r2 \/ N% Ny N% 4r
2

c = - NIn

2

= _oNeYNHAr® 1 - N% ONVNA 4
2 2 2

_  -N++N*+4r* 1 - Nk N% 4r?

= - =NIn(N )
2 2 2

_ 2 2 _ 2 2
o L INEINT A Ly gy g N A

_%(NInN+ ( N+ \/W}f Nln(- N N 4r2) Nln2).

I'm just trying to reduce the number of times wed# extract roots. Also, we can compute the
quantity - N+ ~/N°+ 4r? just once.

Jasmine: It might make sense to combine all tharldgns so that we only have to use the
logarithm function once. So if we 9dt= - N+ +/ N°+ 4r? , then

c = -%(Nlnm ( N- /N 4r2)+ Nln(- N NE 4r2) NInZ)

-%(Nln N+ M+ Nin M- NIn2)

-%(M+ Nin(NM/2)).

Emily: That sounds fine to me. I'll start writirige code.

Emily pulls out her laptop and writes a computergpam that implements the algorithm they
just described. Jasmine peers over her shoulgagtto catch any errors.
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Emily: Okay, that should do it.

Jasmine: Let’s start witN = 2, since that’s the value fidrthat should correspond most closely
to the radii forming the harmonic sequence 1/1, 1/2, 1/4, etc.

Emily types a few commands into the computer.

Emily: Okay, here’s what | get for the approximeddii and centers of the first few circles,

starting with the circle of radius 1:

Vertical Coordinate of Circle Center

Radius of Circle

-0.22598715591350
1.28393567366916
2.13318693070515
2.72632928824970
3.18275145862090
3.55391423079760
3.86675273712960
4.13715183469639
4.37527302547830
4.58801295337492
4.78026842497393

1
0.509922829582653
0.339328427453341
0.253813930091216
0.202608240279971
0.168554531896724
0.144283974435282
0.126115123131513
0.112006067650371
0.100733860246258
0.091521611352779

Jasmine: Wow, look at those radii! They are redlbge to the desired 1/1, 1/2, 1/3, 1/4, ...,
though not quite! Can you tell the computer tmpaut the differences between consecutive
reciprocals of those radii?

Emily types at the computer.
Emily: Sure, here’s the output.

0.96108105381054
0.98591636548910
0.99289665838404
0.99573933297210
0.99716465028699
0.99797858222867
0.99848651868743
0.99882458354363
0.99906085741453
0.99923244772416

Jasmine: Neat!
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Emily: If these radii formed a harmonic
sequence, then all those numbers should be
equal, because the reciprocals of the terms
of a harmonic sequence form an arithmetic
sequence. This shows deviation from

being constant that is well within the
accuracy of the computer’s computations.

# c(N, r) returns the vertical coordinate
# of the center of a circle of radius r

# that fits snugly into

# the graph of y = -N log x.

def c(N, r):
M = -N + (N**2 + 4*r**2)** 5
V =M + N*math.log(M*N/2)
return -V/2

A snippet of code from Emily’s program.
The code is written in Python.

Jasmine: So it's not a
harmonic sequence, but it
sure seems to approach one!
At least, those differences
appear to be approaching 1. |
guess that’s expected since
1/n approximates In (1 + f
better and better asgrows.

Emily: I'm not sure where to
go from here.

Jasmine: We haven't found a
nice container for a stack of
circles whose radii form a
harmonic sequence, and |
have no idea how to find one.
| suppose we could try to
tweak the logarithm since
that comes pretty close, but
the math seems daunting.

Emily: Maybe it's time to
give this problem a rest. We
might as well synthesize our
computations into one last
pic, though.

Emily and Jasmine close the
chapter on stacked circles
with the image at left.
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Systematic Counting, Part 2

by Addie Summer | edited by Jennifer Silva

The next day, | was waiting for the bus againdedided to do more systematic counting,
just for fun. Instead of a circle, | made a griddectangle — a 4 by 6 rectangle, to be exact:

Then, | decided I'd try to count the squares insiderectangle by starting in the top left square
and stepping through the squares in a southeasieglgtion, wrapping around as necessary:

To my surprise, | wasn’t able to count all 24 sgsan the rectangle. Instead, the numbered
squares formed a checker pattern and | only manageablint half of them. It made me want to
try different grid dimensions to see what othetgras | might get.

Luckily for me, the bus was late as usual, sod tivae to try the same thing with a 4 by 7
rectangle. This is what happened:

All squares counted!

Naturally, | wondered which rectangular grid dirsiems would allow all of the squares
to be counted. And, more generally, how many ssgiaould be counted?
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With no bus in sight, | thought more about cougtimrough rectangles. Instead of
moving through the squares by going 1 to the ragitt 1 down, with wraparound, | wondered
what would happen if | werat squares to the right atidsquares down, with wraparound. For
example, ifa = 2 andb = 1, then stepping through the squares of a 3@gtangle would look
like this:

And here’s another example, wih= 4 andb = 3 in a 10 by 9 rectangle:

All of a sudden, a whole new set of questions aresea fixedn by m rectangle, for whicla

andb would you step through all the squares? In géneosv many squares would be counted?
If you fix a andb and always mova to the right andb down, with wraparound, for which
rectangle dimensions would one count all of itsasgs? If the square in ravand columrcis
counted, when will it be counted? In what row aotimn is thek square that is counted?

By the time | managed to sort out the answerhded questions, my basll hadn’t
arrived! What is with these buses? With more timeait, | decided to move into the third
dimension. Take ambymby| block of cubes. Start in a corner and march tifindhe cubes
by moving 1 to the right, 1 down, and 1 forwardthmraparound. For what m, andl will all
of the squares be counted? In general, how maigrag will be counted?

But before | could think much about this, my bunslfy appeared!
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Notes from the Club

These notes cover some of what happened at GinlgieAmeets. In these notes, we include
some of the things that you can try or think akaiudtome or with friends. We also include some
highlights and some elaborations on meet matekiess than 5% of what happens at the club is
revealed here.

Session 23 - Meet 1 Mentors: Anna Ellison, Alexandra Fehnel, Claire Lazar,
September 13, 2018 Jennifer Matthews, Elise McCormack, Charity Midenyo
Kate Pearce, Laura Pierson, Gisela Redondo,
Shohini Stout, Jane Wang, Josephine Yu, Jasmine Zou

We enjoyed a record number of new members.

When a girl arrives at Girls’ Angle for the firgtnie, one of the first things she’ll do is an
interview with one of our mentors. People areiserde, and we want to know if our new
member likes math or hates it, likes a challengeody likes to work alone or in groups, etc. We
want to know which subjects she likes and whichlshthes. We want to know what she hopes
to get out of Girls’ Angle and what her longer tegoals are, especially with respect to math.

Math education is not a one-shoe-fits-all propositi What works for one could easily
fail for another. Based on what we learn fromittierview, we begin the process of
constructing a math project or activity that wédkonate with her. This process continues for as
long as the girl remains at Girls’ Angle, thougkieotime, we aim to have the girl take more and
more control over her own mathematical journeythst, hopefully, when she leaves Girls’
Angle, she knows how she best acquires knowleddaeahieves understanding and has become
her own best teacher.

Session 23 - Meet 2 Mentors: Alexandra Fehnel, Claire Lazar, Kate Pearce,
September 20, 2018 Laura Pierson, Gisela Redondo, Jane Wang,
Josephine Yu, Jasmine Zou

An “Egyptian fraction” is a sum of reciprocalsdiftinct whole numbers. Every positive
rational number can be expressed as an Egyptietioina For example, 1 = 1/2 + 1/3 + 1/6.
Here are some questions about Egyptian fractiatsstbre contemplated at the club: For fixed
n, what rational numbers are expressible as a suecgfrocals of exactlg distinct whole
numbers? What can be said about all the diffexays of expressing a given rational number as
an Egyptian fraction? What is the “sparsest” substhe whole numbers that has the property
that every positive rational number can be expreasea sum of reciprocals of distinct elements
in the subset?

Session 23 - Meet 3 Mentors: Jacqueline Garrahan, Claire Lazar, Jennifer Matshew
September 27, 2018 Charity Midenyo, Kate Pearce, Laura Pierson,
Gisela Redondo, Jane Wang, Josephine Yu, Jasmine Zo

Jacqueline gave us a fascinating account of Isértei Nepal this past summer. Her
journey inspired the following meet challenge pewbi If Mt. Everest, which is about 29,000
feet above sea level, were surrounded by oceanfdromould the horizon line be from the
summit? The radius of the Earth is approximated@ miles. (If you're having trouble solving
this, check ouHaleakal , on page 8, Volume 4, Number 1 of this Bulletin.)
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Session 23 - Meet 4 Mentors: Grace Bryant, Jacqueline Garrahan, Claire Lazar,
October 4, 2018 Elise McCormack, Kate Pearce, Laura Pierson,
Gisela Redondo, Jane Wang

One is the only number with a single (positivetéa and prime numbers are the only
numbers that have exactly two. What numbers hgaetly three factors? Four factors? Five
factors? Etc. Also, for each positive integewhat is the longest string of consecutive numbers
you can find that all have exactifactors?

As a curiosity, the 7 consecutive numbers 171,893,894, 171,895, 171,896, 171,897,
171,898, and 171,899 all have exactly 8 factoran ¥du prove that there does not exist a string
of 8 consecutive numbers that all have exactlyc8fa?

Session 23 - Meet 5 Mentors: Grace Bryant, Claire Lazar, Elise McCormack,
October 11, 2018 Charity Midenyo, Kate Pearce, Laura Pierson,
Shohini stout, Jane Wang, Josephine Yu, Jasmine Zou

The concept of a variable is so fundamental to emattics and to problem solving in
general. Perhaps it should be regarded as ome ohdst important concepts of all. Some of our
members are at that stage in life where they atb®gusp of grasping the concept. To get
there, we try all kinds of things, including varision 20 questions. S#es a Variable!by
Timothy Chow on page 7 of Volume 7, Number 2 o$ tBulletin.

Also, Barry Allen succeeded in finding a formula for the radiushef incircle of an
equilateral triangle as a function of its side kngTo highlight this, we made an equilateral
triangle 6” on a side, then used her formula to jpot® the radius of its incircle. We made a
circle with that radius, then, in front of the wadallub, we slipped that circle into the triangle: a
most satisfyingperfectfit!

Session 23 - Meet 6 Mentors: Grace Bryant, Neslly Estrada, Jacqueline Garrahan,
October 18, 2018 Katie Gravel, Adeline Hillier, Claire Lazar,
Elise McCormack, Kate Pearce, Jane Wang, Jasmine Zo

Suppose you want to flip a coin to choose betweeroptions. You'd like each option
to have an equal chance of being chosen, but, tunitely, you don’t believe that the coin you
have is fair. You're pretty sure that it comeshg@ads a little more often than tails, as most coins
do, but you don’t actually know the exact probaigd. Using this unfair coin, can you come up
with a way to randomly pick between the two optiargch you can prove gives each an equal
chance of being chosen?

Session 23 - Meet 7 Mentors: Grace Bryant, Neslly Estrada, Jacqueline Garrahan,
October 25, 2018 Katie Gravel, Adeline Hillier, Charity Midenyo,
Laura Pierson, Shohini stout, Josephine Yu

Fix a positive integen. LetF(n) be the number of 3-term geometric sequenacbsc,
suchthah b care integers and=n. Here’s a table for the first few valuesrof

n|1]2|3|4]|5]e6|7]|8|o|10]|11]12]13]14|15|16|17]18]19]20]
Foof 1 [ o] o] 2f af 2f 1f 2] 3 o 4 4 1 1 } p b B |2
How can you computg(n) in general?
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Calendar

Session 23: (all dates in 2018)

September 13 Start of the twenty-third session!
20
27
October 4
11
18
25
November 1
8
15
22 Thanksgiving - No meet
29
December 6

Session 24: (all dates in 2019)

January 31 Start of the twenty-fourth session!
February 7
14
21 No meet
28
March 7
14
21
28 No meet
April 4
11
18 No meet
25
May 2
9

Girls’ Angle has been hosting Math Collaboratiohsanools and libraries. Math Collaborations
are fun math events that can be adapted to a yafigfroup sizes and skill levels. For more
information and testimonials, please visibw.girlsangle.org/page/math_collaborations.html

Girls’ Angle can offer custom math classes overititernet for small groups on a wide range of
topics. Please inquire for pricing and possileititi Emailgirlsangle@gmail.com
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fill out the ClutiEnrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Plelase addout your relationship to
mathematics. If you don'’t like math, what don't you like? If you love math, whavddoye? What
would you like to get out of a Girls’ Angle Membership?

The $50 rate is for US postal addresses oRly: international rates, contact us before applying.
Please check all that apply:

Enclosed is a check for $50 for a 1-year Girls’ Angle Membership.

I am making a tax free donation.

Please make check payable@®ixls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiltangle @gmail.com

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and excitg math can be! Make new friends!

The club is where our in-person mentoring takes place. At the club, girlsiweckly with our mentors
and members of our Support Network. To join, please fill out and return th&@alhment form.
Girls’ Angle Members receive a significant discount on club atteceléees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each member as igliéha@ind design
custom tailored projects and activities designed to help the mempenie at mathematics and develop
her thinking abilities. Because we believe learning follows nayundien there is motivation, our
mentors work hard to motivate. In order for members to see math as a liviniyecsabject, at least one
mentor is present at every meet who has proven and published original theorems

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the members how and for what they ugeaoia
member of the Support Network serves as a role model for the membersheFoipety demonstrate that
many women today use math to make interesting and important contributionsetg.soci

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We believe that when dagrsiafiorts are
actually used in real life, the motivation to learn math increases.

Who can join? Ultimately, we hope to open membership to all women. Currently, we are openilgrima
to girls in grades 5-12. We welcorak girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math or suffer fedmanxiety, math is worth
studying.

How do | enroll? You can enroll by filling out and returning the Club Enrollment form.

How do | pay? The cost is $20/meet for members and $30/meet for nonmembers. Members get an
additional 10% discount if they pay in advance for all 12 meets in a sessitsmaré&iwelcome to join at
any time. The program is individually focused, so the concept of “catchinglupheigroup” doesn’t

apply.

Where is Girls’ Angle located? Girls’ Angle is located about 12 minute walk from Central Square on
Magazine Street in Cambridge, Massachusetts. For security reasonmagambers and their
parents/guardian will be given the exact location of the club and its ploomeer.

When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendar detailsepleas
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will be likeGirls’ Angle activities are tailored to
each girl's specific needs. We assess where each girl is matredipatnol then design and fashion
strategies that will help her develop her mathematical abilitieeryBudy learns math differently and
what works best for one individual may not work for another. At Girls’ Angle,re@ery sensitive to
individual differences. If you would like to understand this process in maaé, gg¢ase email us!
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we
rely on public support. Join us in the effort to improve math education! Pleaseymakdonation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has a Ph.D.
in mathematics from MIT and was a Benjamin Peirce assistant proféssattematics at Harvard, a
member at the Institute for Advanced Study, and a National Science Foundatidocporal fellow. In
addition, he has designed and taught math enrichment classes at BostonishMiiSeience, worked in
the mathematics educational publishing industry, and taught at HCSSiM. &eoluateered for

Science Club for Girls and worked with girls to build large modular origaajects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle realizeds goal of helping girls develop their
mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, founder and director of the Explonator

Yaim Cooper, lecturer, Harvard University

Julia Elisenda Grigshy, professor of mathematiast@n College

Kay Kirkpatrick, associate professor of mathematigsiversity of lllinois at Urbana-Champaign

Grace Lyo, Instructional Designer, Stanford Uniitgrs

Lauren McGough, graduate student in physics, Pramcgniversity

Mia Minnes, SEW assistant professor of mathemalti€&sSan Diego

Beth O’Sullivan, co-founder of Science Club for I&ir

Elissa Ozanne, associate professor, Universitytah$chool of Medicine

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Liz Simon, graduate student, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, associate professor, University ofshiagton

Karen Willcox, Director, Institute for Computatidriangineering and Sciences, UT Austin

Lauren Williams, professor of mathematics, Harvdrdversity

At Girls” Angle, mentors will be selected for their depth of understanding of mathematics as well as
their desire to help others learn math. But does it really mattethat girls be instructed by people
with such a high level understanding of mathematics2Ve believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tacktg/field regardless of the level of mathematics
required, including fields that involve original research. Over the destithe mathematical universe
has grown enormously. Without guidance from people who understand a lot of math, thihask is
student will acquire a very shallow and limited view of mathematicshenghtportance of various topics
will be improperly appreciated. Also, people who have proven original theamashesstand what it is
like to work on questions for which there is no known answer and for which tlgitermot even be an
answer. Much of school mathematics (all the way through collegalvesvaround math questions with
known answers, and most teachers have structured their teaching, whetheustnscnot, with the
knowledge of the answer in mind. At Girls’ Angle, girls will learn tetgées and techniques that apply
even when no answer is known. In this way, we hope to help girls become solvergatfuthsolved.

Also, math should not be perceived as the stuff that is done in math klaksad, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can show girls how méhastreo their
daily lives and how this math can lead to abstract structures of enormenesi and beauty.
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Girls’ Angle: Club Enroliment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following peopl# ¢ allowed to pick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, suclargies, that you'd like us to know about?

Photography ReleaseOccasionally, photos and videos are taken to deotiiand publicize our program in all media forms Wil
not print or use your daughter’s name in any waywe have permission to use your daughter’s imagéhese purposes?yYes No

Eligibility: Girls roughly in grades 5-12 are welcome. Althlowge will work hard to include every girl and toremunicate with you
any issues that may arise, Girls’ Angle reservediilcretion to dismiss any girl whose actionsdigeuptive to club activities.

Personal Statement (optional, but strongly encouraged!)}Ve encourage the participant to fill out the
optional personal statement on the next page.

Permission: | give my daughter permission to participate in Girls’ Angle. | haael rand understand
everything on this registration form and the attached information sheets

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
Enclosed is $216 for one session | will pay on a per meet basis at $30/meet.
(12 meets) _ )
I’'m including $50 to become a member,
| will pay on a per meet basis at $20/me and | have selected an item from the left.

| am making a tax free donation.

Please make check payable@xls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with you to ths fireet.
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Personal Statement (optional, but strongly encouraged!)this is for the club participant only. How
would you describe your relationship to mathematics? What would you like to gdtymuir Girls’
Angle club experience? If you don'’t like math, please tell us why. If you lotle, piaase tell us what
you love about it. If you need more space, please attach another sheet.

Girls’ Angle: A Math Club for Girls
Liability Waiver

[, the undersigned parent or guardian of the ¥alg minor(s)

do hereby consent to my child(ren)’s participaiio®irls’ Angle and do forever and irrevocably i&de Girls’
Angle and its directors, officers, employees, agesd volunteers (collectively the “Releaseesijrfrany and
all liability, and waive any and all claims, fofjumy, loss or damage, including attorney’s feesny way
connected with or arising out of my child(ren) stpapation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissibGols’ Angle or any of the Releasees. | forevelease,
acquit, discharge and covenant to hold harmlesRéheasees from any and all causes of action andsbn
account of, or in any way growing out of, direathyindirectly, my minor child(ren)’s participation Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further idicig all
claims or rights of action for damages which my anichild(ren) may acquire, either before or afteroh she
has reached his or her majority, resulting froncarnected with his or her participation in Girlsi@le. | agree
to indemnify and to hold harmless the Releasees &ibclaims (in other words, to reimburse the Reées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdire cost of
defending any claim my child might make, or thagtibe made on my child(ren)’s behalf, that isasé=l or
waived by this paragraph), in any way connectetl witarising out of my child(ren)’s participatiamthe
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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