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An Interview with 
Kristin Lauter, Part 1 
 
Kristin Lauter is a mathematician and the 
head of the cryptography group at Microsoft 
Research1.  She received her doctoral degree 
in mathematics from the University of 
Chicago.  She is an Affiliate Professor at the 
University of Washington in Seattle. 
 This interview2 was conducted in 
person at the University of Washington by 
University of Washington graduate student 
Ke Huang. 
 
Ke Huang:  How did you first become 
interested in math, and what was one of the 
first mathematical things that caught your 
interest?  Did somebody make a big impact 
in your early math life? 
 
Kristin :  I actually really loved math from a 
very early age.  I used to do story problems 
with my dad in the car when we were 
driving, and I always really liked it.  What 
was great for me was that, in school, I had 
teachers who  allowed me to work on my 
own at my own pace.  So I zoomed ahead 
through years of math from elementary 
school and junior high school.  That enabled 
me to graduate high school when I was 15.  
After high school, I went to the University 
of Chicago.  The University of Chicago is a 
great place, especially for young students.  
They test and place all of their incoming 
students into the appropriate level of 
calculus or advanced math, and I was put 
into honors calculus, taught by Jill Pipher, 
and it was a great start. 
 
Ke Huang:  Wow, that’s incredible.  Can 
you tell us more about the story problems 
you did with your dad? 

                                                 
1 Dr. Lauter and Microsoft Research have been a big 
supporter of Girls’ Angle’s Math Collaboration 
initiative and we thank them for their generosity and 
financial support over the years. 

Kristin :  When I was quite young, we had a 
summer home in the woods of Northern 
Wisconsin.  It was about a two-hour drive to 
get there.  During those rides, my dad would 
give me story problems.  I enjoyed them so 
much.  They were essentially algebra 
questions, like a grocer has 15 more apples 
than lemons and the number of lemons is 
two-fifths the number of apples, how many 
lemons does the grocer have?  But he always 
said that I would answer the question almost 
before he finished asking it, which I think is 
really funny because that’s not necessarily a 
good strategy, to answer before you know 
what the end of the question is, but I’d try to 
predict what he was asking me. 
 
Ke Huang:  It sounds like you got them 
right!  Was your dad a mathematician? 
 
Kristin :  No, not at all.  He was a Dean of 
Students at a college, so he really liked 
counseling and mentoring students.  He was 
at Lawrence University in Wisconsin. 
 
Ke Huang:  What drew you to work on 
cryptography? 
 
Kristin :  So, when I was teaching at the 
University of Michigan3, I taught courses on 
coding theory and number theory, and as 
part of those courses, I included an 
introduction to cryptography.  The students 
loved that part of the class, so it was clear 
that it was something that  captured their 
imaginations.  Of course, I thought that it 
was a pretty neat application too, but one 
thing that really impressed me is that the 
graduate students in engineering that 
attended the class had a lot more knowledge 
about the real world than I did.  They knew 
what was going on in industry.  At that time, 
there was kind of a revolution going on in 
coding theory with the introduction of the  

2 Transcription by New England Transcript Services 
of Boston, Inc., with assistance from Peter Park. 
3 Kristin was a Hildebrandt Assistant Professor of 
Mathematics at the University of Michigan from 
1996-1999. 
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The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to ������������	
���
�����
�����
�����	����	����������  and use the code “GIRLS” at checkout.  
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America’s Greatest Math Game: Who Wants to Be a Mathematician. 
 

(advertisement) 
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The Needell in the Haystack 
Blended Thanksgiving Dinner and Compressed Sensing1 
by Deanna Needell | edited by Jennifer Silva 
 
Thanksgiving is coming up, and in my family this is a big holiday.  We 
spend two full days cooking everything from gluten-free stuffing and 
mashed potatoes to pecan pies and my favorite gelatin dessert, “silver 

slip,” not to mention two large turkeys.2  Picture this feast where painstaking effort has gone into 
cooking and preparing everything just right.  Then, imagine Uncle Rick coming along, taking all 
of this perfectly prepared food, and throwing everything together into a large blender!  How 
would you react?  Perhaps, after some initial cringing, you might feel like it was a waste to have 
prepared the food so meticulously if it was just going to be blended all together in the end.  You 
probably could have saved a lot of time if you had just thrown all the ingredients into the blender 
initially, right? 
 Metaphorically speaking, this is exactly what most modern digital cameras do.  Take the 
camera in your phone, for example.  When you take a photo, it measures the light intensity at 
every single “pixel” in the photographic region, only to discard most of that information when it 
compresses the image for storage.  We will refer to this compressed version of the image as the 
measurements.  This seemingly wasteful acquisition paradigm is what led to the field that is now 
known as compressed sensing or compressive signal processing [4, 5].  As the name might 
suggest, the main goal is to acquire the measurements directly in their compressed form, without 
the need to directly measure each pixel first.  This eliminates wasteful time, energy and cost, 
potentially saving tremendous resources in many applications.  For instance, in medical imaging 
it will lead to a significant reduction in scan time; this is especially important in situations such 
as magnetic resonance imaging (MRI), where the patient often has to remain perfectly still for up 
to 40 minutes per scan.  In other types of imaging such as hyperspectral imaging – where 
“photos” are being taken using light outside the visible spectrum – this leads to a significant 
reduction in the number of photon diodes needed, which can reduce cost in some very expensive 
technologies. 

So how do we do compressed sensing, and what does it entail?  The first ingredient we 
need is a low-dimensional model that we can use to argue that compression without serious loss 
of information is even possible.  One mathematical model that has gained a lot of recent attention 
is the use of sparsity.  Sparsity captures the idea that high-dimensional signals often contain a 
very small amount of intrinsic information.  Using this notion, one may design efficient low-
dimensional representations of large-scale data, as well as robust reconstruction methods for 
those representations. 

We will denote our signal of interest by nf Î � ; f may be a large data vector, or the pixel 
intensities of a large image, etc.  We say that f is s-sparse when f has at most s non-zero entries, 
written 

0
f s£ .  Sparsity plays an important role in compressive signal processing because 

compressible signals are those which are approximated well by sparse signals.  In general, a 
signal can be sparse in this sense or it can be sparse with respect to some orthonormal or 
overcomplete basis, in which case f = Dx for some matrix “dictionary” D and sparse vector x.  
Fortunately, many important signals in practical applications are known to have so-called 
sparsifying dictionaries.  For example, natural images can be sparsely represented using a 

                                                 
1 This content supported in part by a grant from MathWorks. 
2 My husband and his brother sometimes call these “dueling” turkeys and have a battle to see whose is better. 
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wavelet basis.3  The details of these bases will not be important for this article; just knowing that 
they exist and give sparse representations for interesting signals is enough.  For the rest of the 
article, we will simply assume that D is the identity matrix, so that f = x is a sparse vector itself. 
 
 

 
 

Figure 1.  Summary of the compressive signal processing process.  Here, D is a Haar wavelet transformation. 
 

Given a compressible signal, we acquire the measurements by applying a wide sampling 
matrix m nA ´Î � , where m n�  (we want m n�  since m will be the size of the compression and 
n is the original dimension).  The measurement vector can then be written as my Af e= + Î � , 
where e is an arbitrary noise vector which usually cannot be avoided in practice.  The 
compressive signal processing problem is to reconstruct an arbitrary compressible signal f from 
these noisy samples using a computationally efficient algorithm.  That is, given knowledge of the 
measurements y and the measurement matrix A, we wish to (approximately) reconstruct the 
signal vector f. 

This is challenging for several reasons.  First, the noise vector e added to the 
measurements means we are unlikely to have any hope of ever exactly solving for f.  But even 
ignoring the noise for a moment, the system y = Af is a highly underdetermined system of m 
equations in n variables.  Sincem n� , the matrix A maps many vectors to the zero vector,4 so 
there isn’t a unique solution to the system; in fact, given y, there are infinitely many vectors x 
that satisfy y = Ax.  However, all hope isn’t lost!  Remember, we aren’t searching for just any 
solution.  Rather, we seek a sparse solution.  This means we seek a solution that will have many 
zero entries, although we don’t know which entries are zero, nor do we know the magnitudes of 
the other entries.  The overall process is illustrated in Figure 1, where we see the original image f 
(center), its sparse representation (left – black pixels represent zero in this image), and its 
compressed version (right). 

 

                                                 
3 There are many kinds of wavelets, including Daubechies wavelets, pioneered by the amazing professor Ingrid 
Daubechies.  I encourage the interested reader to google her name and watch one of her accessible and informative 
lectures.  You can also read a 5-part interview with her in this Bulletin, Volume 1, Number 6 and Volume 2, 
Numbers 1-4. 
4 In the parlance of linear algebra, the matrix A has a large null space. 
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Methods in compressed sensing 
 
Let us now turn to methods for solving the compressed sensing problem.  Recall that the actual 
problem is to solve the noisy underdetermined linear system y = Af + e for an s-sparse vector f.  
Two key questions must be asked: (i) what types of measurement matrices A can we use? and (ii) 
how do we actually solve the problem? 

Let’s begin by first ignoring the noise, that is, e = 0.  Let’s suppose we can get our hands 
on a matrix A that is one-to-one on all s-sparse signals, or equivalently, that there is no 2s-sparse 
signal that A maps to the zero vector.  Then, consider solving the problem by searching for the 
sparsest signal x that matches the measurements y.  Mathematically, our solution is x� defined by: 
 
(1) x� �  

0
arg min

x
x  such that Ax = y.  

 
 Recalling that f, the desired solution, is s-sparse, it follows immediately that this problem 
gives us what we want, namely that x� = f.  Woohoo!  So have we finished talking about solving 
the compressed sensing problem?  Unfortunately, solving (1) in practice is NP-Hard, meaning 
that we do not know of any polynomial time algorithm to solve it.  This makes it very 
impractical – often impossible – to use in practice.  So although this idea gives us a nice result 
theoretically, we need a different approach if we want to use compressed sensing in practice. 

So what shall we try next?  We first remark that the reason (1) is hard to solve in practice 
is that the “L0-norm”5 is not convex.  Indeed, draw the set of all 1-sparse vectors in two 
dimensions and note that this set is not convex (recall that a set is convex if the line connecting 
any of its two points is also completely contained in the set).  It turns out that so-called convex 
programming methods are quite efficient for solving convex problems, so if we could find a 
convex formulation of our compressed sensing problem, this would yield a practical solution.  
You may recall from the previous installment of this series that we define the Lp-norm || · ||p, for 

0 < p �  � , by ||x||p �  ( )1/ pp
ii

x� , and we define the Lp-ball as the set of all vectors whose  

Lp-norm is less than or equal to 1.  Note that as p �  0, the Lp-norm approaches the L0-norm, 
giving it its name.  Now try sketching the Lp-ball for p = 1/2 in dimension 2.  Is it convex?  Your 
answer should be no, as it looks like a diamond whose sides have been “pinched in.”  What about 
for p = 2?  There your answer should be yes, as you get the circle, which is convex.  So here is 
the penultimate question: What is the smallest value of p for which the Lp-ball is convex?   After 
some experimenting, you might see that p = 1, which gives the diamond, is the smallest p for 
which we get a convex ball.  So the ultimate question becomes this: Can we use the L1-norm to 
solve the compressed sensing problem?  In other words, would the small adjustment of (1) work: 
 
(2) x� �  

1
arg min

x
x  such that Ax = y.  

 
Let’s draw a few pictures to get some intuition.  Since this article is printed on two-

dimensional paper, we will begin by drawing in two dimensions.  So, let’s consider a 1-sparse 
vector f in two dimensions, for example the one that is drawn in Figure 2 (left).  We know that f 
is a solution to y = Af, which means that it lies on the line described by {z : Ax = y }; see Figure 2 
(right).  The solution to (2) seeks the vector x that lives on this line and has the smallest  
L1-norm.  To find such a vector, we can draw (scaled) L1-balls starting small and growing larger 
until one intersects the line.  The point on the line with the smallest L1-norm will be precisely 
                                                 
5 The "L0-norm" is not actually a norm, but is commonly (yet inappropriately) called this in the literature. 
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little space for ice cream in the cone, but lots of space for your hand to move around).6  This 
means that if we were to randomly orient the line (which in high dimensions becomes a 
hyperplane), the likelihood that we would obtain an intersection like that drawn in Figure 4 is 
extremely small.  Therefore, if our signal f is sparse in high dimensions, and if we randomly 
design the measurement matrix A (thus, the hyperplane is random), then we can use (2) to 
recover the desired solution f with high probability.  This claim is rigorously proven in several 
works [2, 3, 6, 1] that show, for example, that A can be taken to be a matrix with Gaussian 
entries and m on the order of s log(n).  Notice that such values of m provide significant 
compression since the size of the compression, m, is only logarithmic in the dimension n. 

This is a deep and non-trivial result.  So while this is sinking in, let us settle perhaps the 
last remaining seed of doubt by the astute observer, namely that we have ignored the noise term e 
in the measurements y = Af + e.  When we introduce noise, we no longer “know” the exact 
hyperplane y = Af, but we know that f lives in some “tube” whose radius is r �  ||e||2.  This is 
visualized in Figure 5.  However, we may play this same argument with the tube instead of the 
line; notice that although we may not “hit” the exact point f, we will hit some point nearby, since 
the tube and the L1-ball have only a small region of intersection.  This is also proved rigorously 
[2], and shows that with the same assumption on the matrix A, f can be reconstructed to within an 
accuracy that scales like ||e||2. 
 
The takeaway message 
 
Compressed sensing demonstrates that efficient methods exist that allow one to reconstruct a 
signal or image from compressed measurements.  The applications are abundant and range from 
medical and hyperspectral imaging to wireless communications and environmental sensing.  The 
underlying mathematics that makes this all possible is some of the beauty and surprise of high-
dimensional geometry.  So next time you want to get a shorter MRI or take a cheaper 
photograph, think of your friend, the spiky L1-ball � . 
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6 Also, see Anna’s Math Journal on page 12. 
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 By Anna B. 
 

Anna convinces herself of a claim made in Deanna Needell’s article on page 10.  

Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 
turns, believe many incorrect facts, and encounter many mysteries. Out of these twists and turns comes 
the reward of truth and understanding. However, if you look at math books, you might get the impression 
that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 
discovery, bravely allowing us to watch even as she stumbles. 
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Umbrellas, Part 1 
by Ken Fan, Milena Harned, and Miriam Rittenberg 
 
While doing math together, we stumbled 
upon the following question: In a 
coordinate plane, for fixed whole number 
n, what points can you reach if you start at 
the origin and take precisely n steps, 
where each step is of unit length and has a 
nonnegative vertical displacement? 
 
Let’s call the set of points reachable in n such steps Un.  The figure above shows three reachable 
points P, Q, and R in U3, together with a way to get to each point from the origin O �  (0, 0) using 
the allowed types of steps.  Because every step must have nonnegative vertical displacement, it is 
impossible to reach any point in the lower half of the plane.  And since every step is of unit 
length and the straight line path is the shortest between two points, Un must be contained in the 
circle of radius n centered at O.  Are all points in the upper semicircular disc of the circle of 
radius n and centered at O reachable?  As we will show, the answer is no. 
 
As an aside, if the restriction on the direction of the steps is dropped, so that we can take our 
steps in any direction we wish, then all points of the circular disc of radius n centered at O are 
reachable, except when n = 1.  When n = 1, only the boundary of the unit circle is reachable. 
 
Suppose our kth step is a unit step in the direction � k (given as an angle, in radians, as measured 
counterclockwise from the positive horizontal axis).  Since we require that every step have 
nonnegative vertical component, we know that 0 �  � k �  �  for all k = 1, 2, 3, …, n.  With the kth 
step, we translate by (cos � k, sin � k).  Therefore, Un is the set of points in the coordinate plane of 
the form 
 

(cos � 1 + cos � 2 + cos � 3 + . . . + cos � n, sin � 1 + sin � 2 + sin � 3 + . . . + sin � n). 
 
If you know about complex numbers, another way to describe Un is as the set of points in the 
complex plane of the form 31 2 ni ii ie e e ea aa a+ + + +� , where 0 �  � k �  �  for all k = 1, 2, 3, …, n. 
 
The case n = 1 
 
When n = 1, you may only 
take one unit step from O, so 
U1 is the upper half of the 
unit semicircle centered at O 
(including the endpoints (1, 
0) and (-1, 0)).  See the 
image at right. (When we 
say that a semicircle is 
centered at a point C, we 
mean that C is the center of 
the circle that has the 
semicircle as an arc.) 
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The case n = 2 
 
Let’s analyze the case n = 2 in detail.  What are all the points within two steps of O? 
 
After one step, we end up at some point P 
on U1.  From P, the points we can reach 
with our second step form the upper half 
of a unit semicircle centered at P.  In 
other words, the points of U2 are those 
swept out by a unit semicircle whose 
center follows the semicircular arc U1.  If 
you sketch this, you’ll get a region that 
looks like the shaded region at right.  It 
consists of a semicircular disc of radius 2 
centered at O with two semicircular discs 
each of radius 1 centered at (-1, 0) and (1, 0), respectively, removed.  More precisely, let 
 

S2 = { (x, y) | y �  0, x2 + y2 �  4, (x + 1)2 + y2 �  1, and (x – 1)2 + y2 �  1 }. 
 
It appears that U2 = S2.  Let’s prove this rigorously. 
 
First, suppose P is in U2, so P = (cos �  + cos � , sin �  + sin � ), where 0 �  � , �  �  � .  We will verify 
that each of the defining inequalities for the set S2 are satisfied in the order that we wrote them in 
the definition. 
 
First, since sin �  and sin �  are both nonnegative, so is the vertical coordinate of P. 
 
Next, we compute 
 

(cos �  + cos � )2 + (sin �  + sin � )2 = cos2�  + 2cos �  cos �  +  cos2�  + sin2�  + 2sin �  sin �  +  sin2�  
= 2 + 2 cos �  cos �  + 2 sin �  sin �  
= 2 + 2 cos(�  – � ) �  4. 

 
Also 
 

(cos �  + cos �  + 1)2 + (sin �  + sin � )2 = 3 + 2cos �  + 2cos �  + 2cos �  cos �  + 2sin �  sin �  
= 1 + 2(1 + cos � )(1 + cos � ) + 2sin �  sin �  �  1, 

 
where the last inequality follows since 1+ cos � , 1 + cos � , sin � , and sin �  are all nonnegative. 
 
Similarly, 
 

(cos �  + cos �  – 1)2 + (sin �  + sin � )2 = 3 – 2cos �  – 2cos �  + 2cos �  cos �  + 2sin �  sin �  
= 1 + 2(1 – cos � )(1 – cos � ) + 2sin �  sin �  �  1, 

 
where, this time, the last inequality follows because 1 – cos � , 1 – cos � , sin � , and sin �  are all 
nonnegative. 
 
Since the four defining inequalities of S2 are satisfied, we see that U2 is contained in S2. 
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Now suppose P is in S2.  We will show that P is in U2.  We’ll think of coordinates as position 
vectors in this argument.  Suppose P = (a, b).  We exploit the mirror symmetry (about the 
vertical axis) by assuming that a is nonnegative.  If P = O, then we can see that P is in U2 by 
expressing O as (1, 0) + (-1, 0).  So assume that P is not the origin.  If the distance of P from the 
origin is 2 units, then we can see that P is in U2 by writing P = P/2 + P/2.  So assume further that 
P is strictly within the circle of radius 2 centered at O. 
 
We first show that P = X + Y where X 
and Y both have unit length.  Because P 
is within 2 units of O, but not equal to 
O, we know that the unit circles 
centered at O and P intersect in exactly 
two points, which we’ll label X and Y 
in such a way that the vertical 
coordinate of X does not exceed that of 
Y.  Then O, X, Y, and P form the 
vertices of a rhombus with side length 
1.  Since all rhombi are parallelograms, 
we know that P = X + Y. 
 
Next, we will show that the vertical coordinate of X is, in fact, nonnegative.  This is equivalent to 
showing that mÐXOP �  mÐPOZ, where Z = (1, 0).  Since P is in the first quadrant, this is, in 
turn, equivalent to showing that cos mÐXOP �  cos mÐPOZ.  Observe that cos mÐXOP is 

2 2 / 2a b+  (the diagonals of a rhombus are perpendicular bisectors) and cos mÐPOZ is  
2 2/a a b+ .  Therefore, we desire that 2 2 / 2a b+  �  2 2/a a b+ .  This can be rearranged to 

a2 + b2 �  2a, or (a – 1)2 + b2 �  1, which is true for P in S2.  Therefore, P is in U2, as desired. 
 
A symmetric argument gives us the same conclusion if P is in the second quadrant. 
 
Since S2 is contained in U2 and U2 is contained in S2, we must have U2 = S2. 
 
The general case 
 
In general, define Sn to be the region in the coordinate 
plane inside the upper half of the circle of radius n 
centered at the origin, but outside a row of unit circles 
centered at points along the horizontal axis.  More 
precisely, define 
 

Sn �  { (x, y) | y �  0, x2 + y2 �  n2, and (x – (n + 1 – 2k))2 + y2 �  1 for k = 1, 2, 3, …, n }. 
 
The illustration shows S5.  The shape of Sn reminded us of the profile of an umbrella, hence the 
title. 
 
In the sequel, we will prove that Un = Sn by induction on n.  Can you prove this before the next 
issue appears? 
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Learn by Doing 
Cardinality 
by Michael Kielstra | edited by Amanda Galtman 
 
What is the size of the biggest set? 
 
By “size,” I do not mean physical size.  Instead, I’m referring to a measure of the quantity of 
elements that the set contains.  For example, all sets with a single element are to be considered 
the same size, whether that element be an elephant or a point in space. 
 
If we consider only finite sets, we can determine size by counting elements.  For example, the set 
of capital letters in the alphabet has 26 elements, so we could say that it has size 26.  Since every 
whole number can be increased by adding one to it, there is no “biggest” finite set.  Any finite set 
can be made bigger by tossing a new element into it. 
 
But what happens if we include infinite sets?  After all, we frequently work with them.  For 
example, consider the set of integers, the set of polynomials, the set of polygons, the set of dots-
and-boxes starting configurations, the set of mathematical equations, and so on.  Is there such a 
thing as a biggest infinite set?  How can we even compare the size of one infinite set to another?  
Indeed, how can we even measure the size of an infinite set?  Should we simply say that an 
infinite set has infinite size and be done with it? 
 
Suppose S and T are infinite sets.  We might be tempted to say that T is bigger than S if S is a 
proper subset of T, in other words, if every element of S is an element of T and there exist 
elements in T that are not in S.  For example, if S is the set of even integers and T is the set of all 
integers, then S is a proper subset of T.  Should we say T is bigger than S? 
 
One objection to defining “bigger” in this way is that it is not compatible with our notion of 
“bigger” for finite sets.  When we say that one finite set is bigger than another, we do not require 
that the smaller set be a subset of the bigger set.  Instead, we count the number of elements in 
each set to determine its size, and then compare the sizes, not the sets.  That is, our notion of size 
is not related to the nature of the elements in the set.  Instead, we regard each element in a set as 
an equal contributor to the set’s size.  If, for instance, we were to swap out an element in a set for 
another, we would consider the resulting set to be the same size as the original. 
 
So, how can we extend the notion of size to infinite sets?  One frequently used approach to 
extending a notion to a new context is to redefine the notion in a way that can be applied in the 
new context. 
 
1. We’ll think of a finite set as a bag containing its elements.  You’re given two finite sets.  Can 
you think of a way to decide which set is bigger or if they are the same size without counting the 
number of elements in each set?  (That is, can you compare the sizes of the sets without having to 
concern yourself with keeping track of a number?) 
 
(Spoiler Alert!)  One way to solve Problem 1 is to reach into both bags, pull out one element 
from each, and repeat until one or both bags have no more elements to remove.  If both bags 
empty at the same time, they had to be the same size.  Otherwise, the one which emptied first is 
smaller. 
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Another way to put it is that if you can establish a one-to-one correspondence between the two 
sets, then the sets have the same size.  (A one-to-one correspondence is a pairing of the elements 
of one set with the elements of the other in such a way that each element is paired with exactly 
one element of the other set.  In the previous paragraph, elements removed at the same time form 
a pair.) 
 
The beauty of using a one-to-one correspondence to establish that two sets are the same size is 
that this notion can be applied as is to infinite sets. 
 
2. Show that the set of positive perfect squares is the same size as the set of positive integers.  (!) 
 
(Spoiler Alert!)  The set of positive perfect squares and the set of positive integers are both 
infinite sets, and, in fact, one contains the other.  But we’ve already seen that being a proper 
subset is not a good way to compare the sizes of sets.  Instead, we can pair the positive integer n 
with the perfect square n2 to establish a one-to-one correspondence between these two sets. 
 
3. Let � ��  be the set of positive integers and let �  be the set of integers.  Show that � ��  and �  
are the same size. 
 
Any set that can be put into one-to-one correspondence with the set of positive integers is said to 
be countably infinite.  If a set can be put into one-to-one correspondence with a subset of the 
positive integers, it is said to be countable.  You have just proven that the set of perfect squares 
and set of integers are both countably infinite. 
 
We have declared that two sets have the same size if their elements can be put into one-to-one 
correspondence with each other.  Two such sets are said to have the same cardinality .  But for 
this notion to be a reasonable measure of the size of a set, we would want this measure of size to 
enjoy the following properties: 
 

Property 1. (Reflexivity) Every set has the same cardinality as itself. 
 
Property 2. (Symmetry) If set A has the same cardinality as set B, then set B has 

the same cardinality as set A. 
 
Property 3. (Transitivity) If set A has the same cardinality as set B, and set B has 

the same cardinality as set C, then set A has the same cardinality as set C. 
 
(In other words, we want the relationship that two sets have the same cardinality to be an 
equivalence relation.) 
 
4. Show that our definition of cardinality enjoys all three of these properties. 
 
Are all infinite sets countable? 
 
5. Let S be the set of infinite sequences {ai} i = 1, 2, 3, … where ai can be 0 or 1 only.  Show that S is 
not countable.  Hint: Suppose, to the contrary, that S is countable.  Then we can establish a one-
to-one correspondence between elements of S and the positive integers.  In other words, we can 
form a sequence s1, s2, s3, …, such that every element of S is equal to one of the sk.  (Here, each 
sk is an infinite sequence of 0’s and 1’s.)  For example, s1 might be the sequence that begins with 



 

© Copyright 2018 Girls’ Angle.  All Rights Reserved.                                                                19 

a 1, but then every term after is 0, and s2 might be the sequence that begins 0, 1, but then every 
term after is 0.  Whatever the sk specifically are, define a sequence {bi} i = 1, 2, 3, … by setting bi to 1 
if the ith term of si is 0, and 0 if the ith term of si is 1.  Then {bi} i = 1, 2, 3, … is a sequence in S and 
must be equal to sk for some k.  Which sk is equal to {bi} i = 1, 2, 3, …? 
 
The argument implied by the hint of Problem 5 is known as Cantor’s diagonalization 
argument, after Georg Cantor.  A set that is not countable is said to be uncountable. 
 
Let 0 �  x < 1 be a real number.  If we express x in binary, we get a sequence of 0’s and 1’s by 
looking at its binary digits after the binary point.  This is almost the situation of Problem 5.  The 
difference is that some numbers do not have a unique binary expression.  For example, as binary 
numbers, 0.01 = 0.1, whereas in Problem 5, the sequences 0, 1, 1, 1, … and 1, 0, 0, 0, … are 
distinct.  Nevertheless, Cantor was able to address these technicalities and use his 
diagonalization argument to show that the set of real numbers is uncountable. 
 
Try your hand at determining the cardinality of sets. 
 
6. Is the set of rational numbers countable? 
 
7. Is the set of quadratic polynomials ax2 + bx + c, where a, b, and c are integers, countable? 
 
8. Is the set of polynomials with rational coefficients countable? 
 
9. Is the set of all roots of polynomials with rational coefficients countable? 
 
10. Let P be the set of ordered pairs (x, y), where x and y are real numbers.  Show that P has the 
same cardinality as the set of real numbers. 
 
11. Tweak your solution to Problem 5 to show that the set of real numbers is uncountable. 
 
12. Let S be a set.  The power set of S is the set of all subsets of S.  Show that the power set of S 
does not have the same cardinality as S. 
 
13. Unlike Problem 12, given a countably infinite set S, let F be the set of all finite subsets of S.  
Show that F and S have the same cardinality. 
 
14. Let Ak be a countably infinite set for each k = 1, 2, 3, ….  Let B be the union of all the Ak.  
Show that B is countable. 
 
15. Construct a partition of � ��  into infinitely many infinite sets.  (A partition of a set S is a 
collection of subsets of S with the property that ever element of S is in precisely one of the 
subsets in the collection.) 
 
We close with the Schröder–Bernstein theorem, which gives an often handy way to prove that 
two sets have the same cardinality. 
 
16. (Schröder–Bernstein) Let S and T be two sets.  An injective function is a function that maps 
distinct elements to distinct elements.  Suppose that there is an injective function f from S to T 
and an injective function g from T to S.  Prove that S and T have the same cardinality. 
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Stacked Circles, Part 4 
by Ken Fan | edited by Jennifer Silva 
 
Jasmine: This is painful! 
 
Emily: I wonder why arithmetic and geometric sequences of circles worked out so nicely, but 
this harmonic sequence eludes us. 
 
Jasmine: I can’t think of another way to look at this problem, so I have no insight into why one 
works out and another doesn’t, except to say that when stacking circles into an angle, similarity 
glues everything together. 
 
Emily: Actually, this quest for a nice container for a stack of circles whose radii are in harmonic 
progression is a bit odd.  Still, let’s at the very least check to see if the logarithmic container does 
the job or not. 
 
Jasmine: Okay.  How do you propose we do that? 
 
Emily: I guess we can write a computer program that determines the radius of the next circle in a 
stack.  Though the program will have inherent error in its computations, I have a feeling that we 
will still be able to see that the sequence cannot be the desired harmonic sequence.  You look 
sad, Jasmine! 
 
Jasmine: Sorry.  I am disappointed that we’re contemplating writing a computer program to get 
an anticipated negative result.  Plus, if we go through the process of writing a computer program 
– even if we do learn that the logarithm isn’t the desired container – it probably won’t give us 
further insight into the problem. 
 
Emily: You’re right, and I understand.  But things feel stuck, and I don’t think the computer 
program will take long to write.  Besides, it will hopefully tell us that the logarithm doesn’t 
work.  I’m dying to know! 
 
Jasmine: All right.  Let’s write the program. 
 
Emily: Great!  It helps us that the center of the circle and its radius are monotonically related.  As 
the circle rises up the vertical axis, its radius shrinks. 
 
Jasmine: Yes, that’s good.  It means that for each radius, there is a unique circle.  But I think 
what we need is an algorithm that, given one circle in the stack, computes the next. 
 
Emily: So how about this: Let r0 be the radius of the given circle.  We then halve r0 repeatedly 
until we find a circle that is fully above the given circle.  That would mean we’ve overshot the 
radius of the next circle in the stack.  That is, we let r1 = r0/2 and check if the circle with radius r1 
is too high.  If it isn’t, we let r2 = r1/2 and see if the corresponding circle is too high.  We keep 
going until we find rn, the first circle with radius r0 divided by a power of 2 that is too high.  We 
then let rn + 1 be the average of rn and rn – 1.  If the circle with radius rn + 1 is too high, we let rn + 2 
be the average of rn – 1 and rn + 1.  Otherwise, we let rn + 2 be the average of rn and rn + 1.  That is, 
we extend the sequence of radii by picking the next radius to be the average of the last two 
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values that most tightly sandwich the desired radius.  This way, we will double the accuracy of 
our estimate with each iteration, quickly exceeding the computational accuracy of the computer. 
 
Jasmine: That sounds fine to me.  We need the equation we found last time that related the radius 
of a circle to the vertical coordinate of its center.  Here it is: 
 

2 2 2 2 24 4
ln

2 2
N N r N N N r

c N
- + + - + +

= - - , 

 
where N is a fixed parameter that scales our logarithmic graph in the vertical direction, r is the 
radius of the circle, and c is the vertical coordinate of its center. 
 
Emily: We can leave N as a parameter in the program.  I’m thinking for the purposes of the 
program, it might make sense to express c like this: 
 

c = 
2 2 2 2 24 4
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- + + - + +
- -  

 = 
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 = ( ) ( )( )2 2 2 21
ln 4 ln 4 ln 2

2
N N N N r N N N r N- + - + + + - + + - . 

 
I’m just trying to reduce the number of times we have to extract roots.  Also, we can compute the 

quantity 2 24N N r- + +  just once. 
 
Jasmine: It might make sense to combine all the logarithms so that we only have to use the 

logarithm function once.  So if we set M = 2 24N N r- + + , then 
 

c = ( ) ( )( )2 2 2 21
ln 4 ln 4 ln 2

2
N N N N r N N N r N- + - + + + - + + -  

 = ( )1
ln ln ln 2

2
N N M N M N- + + -  

 = ( )( )1
ln / 2

2
M N NM- + . 

 
Emily: That sounds fine to me.  I’ll start writing the code. 
 
Emily pulls out her laptop and writes a computer program that implements the algorithm they 
just described.  Jasmine peers over her shoulder trying to catch any errors. 
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Emily: Okay, that should do it. 
 
Jasmine: Let’s start with N = 2, since that’s the value for N that should correspond most closely 
to the radii forming the harmonic sequence 1/1, 1/2, 1/3, 1/4, etc. 
 
Emily types a few commands into the computer. 
 
Emily: Okay, here’s what I get for the approximate radii and centers of the first few circles, 
starting with the circle of radius 1: 
 

Vertical Coordinate of Circle Center Radius of Circle 

 
-0.22598715591350 0 

1.28393567366916 
2.13318693070515 
2.72632928824970 
3.18275145862090 
3.55391423079760 
3.86675273712960 
4.13715183469639 
4.37527302547830 
4.58801295337492 
4.78026842497393 

 

 
1 

0.509922829582653 
0.339328427453341 
0.253813930091216 
0.202608240279971 
0.168554531896724 
0.144283974435282 
0.126115123131513 
0.112006067650371 
0.100733860246258 
0.091521611352779 

 
  
Jasmine: Wow, look at those radii!  They are really close to the desired 1/1, 1/2, 1/3, 1/4, …, 
though not quite!  Can you tell the computer to print out the differences between consecutive 
reciprocals of those radii? 
 
Emily types at the computer. 
 
Emily: Sure, here’s the output. 
 

0.96108105381054 
0.98591636548910 
0.99289665838404 
0.99573933297210 
0.99716465028699 
0.99797858222867 
0.99848651868743 
0.99882458354363 
0.99906085741453 
0.99923244772416  

 
Jasmine: Neat! 
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Emily: If these radii formed a harmonic 
sequence, then all those numbers should be 
equal, because the reciprocals of the terms 
of a harmonic sequence form an arithmetic 
sequence.  This shows deviation from 
being constant that is well within the 
accuracy of the computer’s computations. 
 
 
 
 
 
 
 
 
 
 

 
Jasmine: So it’s not a 
harmonic sequence, but it 
sure seems to approach one!  
At least, those differences 
appear to be approaching 1.  I 
guess that’s expected since 
1/n approximates ln (1 + 1/n) 
better and better as n grows.  
 
Emily: I’m not sure where to 
go from here. 
 
Jasmine: We haven’t found a 
nice container for a stack of 
circles whose radii form a 
harmonic sequence, and I 
have no idea how to find one.  
I suppose we could try to 
tweak the logarithm since 
that comes pretty close, but 
the math seems daunting. 
 
Emily: Maybe it’s time to 
give this problem a rest.  We 
might as well synthesize our 
computations into one last 
pic, though. 
 
Emily and Jasmine close the 
chapter on stacked circles 
with the image at left. 

# c(N, r) returns the vertical coordinate 
# of the center of a circle of radius r 
# that fits snugly into 
# the graph of y = -N log x. 
 
def c(N, r): 
    M = -N + (N**2 + 4*r**2)**.5 
    V = M + N*math.log(M*N/2) 
    return -V/2 
 
A snippet of code from Emily’s program. 
The code is written in Python. 
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Systematic Counting, Part 2 
by Addie Summer | edited by Jennifer Silva 
 
 The next day, I was waiting for the bus again.  I decided to do more systematic counting, 
just for fun.  Instead of a circle, I made a gridded rectangle – a 4 by 6 rectangle, to be exact: 
 
 

      

      

      

      

 
 
Then, I decided I’d try to count the squares inside the rectangle by starting in the top left square 
and stepping through the squares in a southeasterly direction, wrapping around as necessary: 
 
 

�� � �� � �� �

� �� � �� � � ��

�� � 	� � �� � �

� 
� � �� � �� �

 
 
To my surprise, I wasn’t able to count all 24 squares in the rectangle.  Instead, the numbered 
squares formed a checker pattern and I only managed to count half of them.  It made me want to 
try different grid dimensions to see what other patterns I might get. 
 Luckily for me, the bus was late as usual, so I had time to try the same thing with a 4 by 7 
rectangle.  This is what happened: 
 
 

�� �� �� � �� � �� �	 � �� �

�� � �� �� � �
 � �� � �� �� �

�� � �	 � 	� �� � �� � �� � ��


� �� � �� � �� �� � �� � �
 �

 
 
All squares counted! 
 Naturally, I wondered which rectangular grid dimensions would allow all of the squares 
to be counted.  And, more generally, how many squares would be counted? 
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 With no bus in sight, I thought more about counting through rectangles.  Instead of 
moving through the squares by going 1 to the right and 1 down, with wraparound, I wondered 
what would happen if I went a squares to the right and b squares down, with wraparound.  For 
example, if a = 2 and b = 1, then stepping through the squares of a 3 by 5 rectangle would look 
like this: 
 

�� �� �� �� � �	 �

�� � �� � �� �� 
�

�� �� �� � �� � 	�

 
 
And here’s another example, with a = 4 and b = 3 in a 10 by 9 rectangle: 
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All of a sudden, a whole new set of questions arose: For a fixed n by m rectangle, for which a 
and b would you step through all the squares?  In general, how many squares would be counted?  
If you fix a and b and always move a to the right and b down, with wraparound, for which 
rectangle dimensions would one count all of its squares?  If the square in row r and column c is 
counted, when will it be counted?  In what row and column is the kth square that is counted? 
 
 By the time I managed to sort out the answers to these questions, my bus still hadn’t 
arrived!  What is with these buses?  With more time to wait, I decided to move into the third 
dimension.  Take an n by m by l block of cubes.  Start in a corner and march through the cubes 
by moving 1 to the right, 1 down, and 1 forward, with wraparound.  For what n, m, and l will all 
of the squares be counted?  In general, how many squares will be counted? 
 But before I could think much about this, my bus finally appeared! 
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Notes from the Club 
 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 23 - Meet 1 
September 13, 2018 

Mentors: Anna Ellison, Alexandra Fehnel, Claire Lazar, 
Jennifer Matthews, Elise McCormack, Charity Midenyo, 
Kate Pearce, Laura Pierson, Gisela Redondo, 
Shohini Stout, Jane Wang, Josephine Yu, Jasmine Zou 

 We enjoyed a record number of new members. 
When a girl arrives at Girls’ Angle for the first time, one of the first things she’ll do is an 

interview with one of our mentors.  People are so diverse, and we want to know if our new 
member likes math or hates it, likes a challenge or not, likes to work alone or in groups, etc.  We 
want to know which subjects she likes and which she loathes.  We want to know what she hopes 
to get out of Girls’ Angle and what her longer term goals are, especially with respect to math. 

Math education is not a one-shoe-fits-all proposition.  What works for one could easily 
fail for another.  Based on what we learn from the interview, we begin the process of 
constructing a math project or activity that will resonate with her.  This process continues for as 
long as the girl remains at Girls’ Angle, though, over time, we aim to have the girl take more and 
more control over her own mathematical journey, so that, hopefully, when she leaves Girls’ 
Angle, she knows how she best acquires knowledge and achieves understanding and has become 
her own best teacher. 
 

Session 23 - Meet 2 
September 20, 2018 

Mentors: Alexandra Fehnel, Claire Lazar, Kate Pearce, 
Laura Pierson, Gisela Redondo, Jane Wang, 
Josephine Yu, Jasmine Zou 

 

 An “Egyptian fraction” is a sum of reciprocals of distinct whole numbers.  Every positive 
rational number can be expressed as an Egyptian fraction.  For example, 1 = 1/2 + 1/3 + 1/6.  
Here are some questions about Egyptian fractions that were contemplated at the club: For fixed 
n, what rational numbers are expressible as a sum of reciprocals of exactly n distinct whole 
numbers?  What can be said about all the different ways of expressing a given rational number as 
an Egyptian fraction?  What is the “sparsest” subset of the whole numbers that has the property 
that every positive rational number can be expressed as a sum of reciprocals of distinct elements 
in the subset? 
 

Session 23 - Meet 3 
September 27, 2018 

Mentors: 
 

Jacqueline Garrahan, Claire Lazar, Jennifer Matthews, 
Charity Midenyo, Kate Pearce, Laura Pierson, 
Gisela Redondo, Jane Wang, Josephine Yu, Jasmine Zou 

 Jacqueline gave us a fascinating account of her visit to Nepal this past summer.  Her 
journey inspired the following meet challenge problem: If Mt. Everest, which is about 29,000 
feet above sea level, were surrounded by ocean, how far would the horizon line be from the 
summit?  The radius of the Earth is approximately 3,960 miles.  (If you’re having trouble solving 
this, check out Haleakal� , on page 8, Volume 4, Number 1 of this Bulletin.) 



 

© Copyright 2018 Girls’ Angle.  All Rights Reserved.                                                                28 

Session 23 - Meet 4 
October 4, 2018 

Mentors: Grace Bryant, Jacqueline Garrahan, Claire Lazar, 
Elise McCormack, Kate Pearce, Laura Pierson, 
Gisela Redondo, Jane Wang 

 One is the only number with a single (positive) factor and prime numbers are the only 
numbers that have exactly two.  What numbers have exactly three factors?  Four factors?  Five 
factors?  Etc.  Also, for each positive integer n, what is the longest string of consecutive numbers 
you can find that all have exactly n factors? 
 As a curiosity, the 7 consecutive numbers 171,893, 171,894, 171,895, 171,896, 171,897, 
171,898, and 171,899 all have exactly 8 factors.  Can you prove that there does not exist a string 
of 8 consecutive numbers that all have exactly 8 factors? 
 

Session 23 - Meet 5 
October 11, 2018 

Mentors: 
 

Grace Bryant, Claire Lazar, Elise McCormack, 
Charity Midenyo, Kate Pearce, Laura Pierson, 
Shohini stout, Jane Wang, Josephine Yu, Jasmine Zou 

The concept of a variable is so fundamental to mathematics and to problem solving in 
general.  Perhaps it should be regarded as one of the most important concepts of all.  Some of our 
members are at that stage in life where they are on the cusp of grasping the concept.  To get 
there, we try all kinds of things, including variants on 20 questions.  See It is a Variable! by 
Timothy Chow on page 7 of Volume 7, Number 2 of this Bulletin. 

Also, Barry Allen  succeeded in finding a formula for the radius of the incircle of an 
equilateral triangle as a function of its side length.  To highlight this, we made an equilateral 
triangle 6” on a side, then used her formula to compute the radius of its incircle.  We made a 
circle with that radius, then, in front of the whole club, we slipped that circle into the triangle: a 
most satisfying perfect fit! 
 

Session 23 - Meet 6 
October 18, 2018 

Mentors: Grace Bryant, Neslly Estrada, Jacqueline Garrahan, 
Katie Gravel, Adeline Hillier, Claire Lazar, 
Elise McCormack, Kate Pearce, Jane Wang, Jasmine Zou 

 Suppose you want to flip a coin to choose between two options.  You’d like each option 
to have an equal chance of being chosen, but, unfortunately, you don’t believe that the coin you 
have is fair.  You’re pretty sure that it comes up heads a little more often than tails, as most coins 
do, but you don’t actually know the exact probabilities.  Using this unfair coin, can you come up 
with a way to randomly pick between the two options which you can prove gives each an equal 
chance of being chosen? 
 

Session 23 - Meet 7 
October 25, 2018 

Mentors: 
 

Grace Bryant, Neslly Estrada, Jacqueline Garrahan, 
Katie Gravel, Adeline Hillier, Charity Midenyo, 
Laura Pierson, Shohini stout, Josephine Yu 

 Fix a positive integer n.  Let F(n) be the number of 3-term geometric sequences a, b, c, 
such that a �  b �  c are integers and c = n.  Here’s a table for the first few values of n: 
 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

F(n) 1 1 1 2 1 1 1 2 3 1 1 2 1 1 1 4 1 3 1 2 

 
How can you compute F(n) in general? 
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Calendar 
 
Session 23: (all dates in 2018) 
 

September 13 Start of the twenty-third session! 
 20  
 27  
October 4  
 11  
 18  
 25  
November 1  
 8  
 15  
 22 Thanksgiving - No meet 
 29  
December 6  

 
Session 24: (all dates in 2019) 
 

January 31 Start of the twenty-fourth session! 
February 7  
 14  
 21 No meet  
 28  
March 7  
 14  
 21  
 28 No meet 
April 4  
 11  
 18 No meet 
 25  
May 2  
 9  

 
Girls’ Angle has been hosting Math Collaborations at schools and libraries.  Math Collaborations 
are fun math events that can be adapted to a variety of group sizes and skill levels.  For more 
information and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 
the information here is also on that form. 
 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 
Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

�  Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

�  I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle .  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls  
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Girls’ Angle 
Club Enrollment  
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 
 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll?  You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay?  The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 12 minute walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 
mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 

Connie Chow, founder and director of the Exploratory 
Yaim Cooper, lecturer, Harvard University 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Instructional Designer, Stanford University 
Lauren McGough, graduate student in physics, Princeton University 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 
their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address: ___________________________________________________________ Zip Code: _________ 
 
Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

�  Enclosed is $216 for one session 
(12 meets) 
 

�  I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

�  I will pay on a per meet basis at $30/meet. 
 

�  I’m including $50 to become a member, 
and I have selected an item from the left. 

 
�  I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle .  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 
Emergency contact name and number: ____________________________________________________________________________ 
 
 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  
 
___________________________________________________________________________________________ 
 
Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 
Eligibility:  Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 
  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


