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From the Founder

Every math problem that challenges you to the pehre you get stuck is
an opportunity to develop techniques for findingvnmoints of view. That
skill is helpful not just in math, but with all &ife’s problems. The Bulletin
contains problems at a variety of difficulty levdbsit if you still don't find
something challenging enough, let us know!

- Ken Fan, President and Foun
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An Interview with Christine Berkesch Zamaere

Christine Berkesch Zamaere is an assistant . .
professor of mathematics at the University of "'anythmg worth pursuing
Minnesota. She earned her doctoral degree in takes hard work, so do not be

mathematics from Purdue University under the  afraid to dive in and get busy
supervision of Uli Walther.

Ken: To get things started, I'm interested to know what mathematics meant towarioas
stages in your life. For example, what did mathematics mean to you in kindefgdn middle
school? In high school? In college? In graduate school? And today?

Christine: For me, mathematics meant pattern recognition, arithmetic, logic, ancggam
elementary school. In middle school, | was introduced to algebra and how to use rieshiema
solve problems in everyday life situations, for example, in computing interestjagiton
problems, and basic physics. During high school, | began to grasp the power, pracivalit
ubiquity of the subject; mathematics is the foundation for economics, sciencegamekeing.
Through graduate school and beyond, | have learned to appreciate how various mathematic
disciplines work together to yield new discoveries. For example, in tryingderstand
geometric objects and their associated equations in my own research, | ufenoalgebra,
geometry, analysis (the study of continuous structure), and combinatoricaithefstiscrete
structure).

Ken: When did becoming a mathematician become a goal? What turned you on to mafftfemati

Christine: When | began college, | planned to be a violinist, but | also continued to study
mathematics because | found it fun. After my sophomore year, | had the oppddunity
participate in a Research Experience for Undergraduates (REU) fundeel ldgttonal Science
Foundation. It opened up my eyes to the world of mathematical research, which Irdddove
really enjoyed!

| worked with a small group of students from around the country on a research project in
combinatorial representation theory. We used computers to run large searares abeg
examples much faster than we could have done by hand. We then hunted for patterns and used
our observations to make conjectures. Finally, we constructed proofs to turn our cesjetttur
theorems. While each step in this process was rewarding, the part | found th&aitiost was
that by the end, we understood mathematics that no one else had ever figured ousbefore
Because of this great experience, | decided to pursue mathematicsesr acdrset my sights
on graduate school!

Ken: How do you learn mathematics? Did you ever encounter a mathematical subject or
concept that proved difficult to grasp? If so, what kinds of things did you do to grasp it
eventually?

Christine: Learning new mathematics for me involves several steps. Even ifdramate
enough to attend lectures on the subiject, | still spend time reading and working on pifotaem
books and old exams. Other people are also an important resource to me! | talk withaxpe
the new topic, as well as with others who are learning along with me.
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Finding the Maxinmm Subsequence, Part 2

by Kate Jenkins | edited by Jennifer Silva

Did you think of a way to find the maximum subsequence in a sequence offength
using fewer thamN addition problems?

Recall that we are trying to come up with an algorithm that, given any sequfence
numbers, will find the subsequence with the largest sum by doing as little wooksble.
Here is the example sequence we’ve been looking at:

1 -2 2 -1 4
lst 2nd 3rd 4th 5th

Let's make the following 2 definitions:
Let M(j) be the maximum of all the sums of subsequences that end at ppsition
Lets(j) be the start position for the maximum subsequence that ends at gosition

If we knew the values d¥1(j) ands(j) for all values of between 1 and the length of our
sequence, then we would have the answer to our original problem. This is becauserthemax
subsequence has to end at some valijiesof— by definition — its start position would $§p and

its sumM(j).

Let's see if we can efficiently computd(j) ands(j).

In our exampleM(1) = 1 ands(1) = 1. We know this because the only subsequence that
ends at position 1 is the one that also begins there, and its sum is the valu€'ofuimddr in
the sequence, which happens to be 1.

Forj = 2, there are only two subsequences to consider — the one that begins and ends at
the 29term, or the one that begins with tifétérm and ends with thé®erm. In other words,
you can either start over with a new subsequence beginning witff'tleer, or extend the one
beginning at the®term by one term. Which has the bigger sum? It depends on whk)es
positive or negative. For our purpose, it's better to start over than to extend a subsequence
whose sum is negative. In this case, sM¢&) = 1 is greater than 0, our best bet is to extend the
sequence to the one starting at tfiéetm and ending with thé'®term. So

5(2) = 1 andVi(2) =M(1) + 2" term of sequenge 1 + (-2) = -1.
For any value of > 1, the choice is to either extend a sequence that epdslgtor to
begin a new sequence at fitle position. If you are extending an existing sequence, you can't

possibly do better than to extend the subsequence with the maximal sum thaj entls at

These considerations suggest the following algorithm to find the maximumegsigree
by computingM(j) ands(j) for a sequence of lenghtt

1 This content supported in part by a grant fromiWdéorks.



Maximum Subsequence Finder Algorithm

Step 1. Lef = 1, letM(j) be the ¥ term in the sequence,
and lets(j) = 1.

Step 2. Lef = 2.
Step 3. IfM(j — 1) <0, then lei(j) be thgth term of the
sequence and lsfj)) =j. If M(j —1) O, then let
M(j) be the sum di(j — 1) and th¢th term of the
sequence and lsfj)) =s(j — 1).
Step 4. Increase the valuejdfy 1.
Step 5. Iff N, goto Step 3.
Step 6. Stop.
As the steps are worked through, keep track of the valuthat corresponds to the largest value
of M(j) so far computed. When the algorithm terminates, we will know the vajughwreM is
maximal. Let’'s denote bythis special value gf Then the maximum subsequence is the

sequence froms(J) to J, and the sum of this subsequenckl(g).

Here’s how the algorithm works when applied to our sample sequence:

1 -2 2 -1 4
lst 2nd 3rd 4th 5th
Value ofj such thatM(j) is the
Step| | M() | s() | largest value ofM so far computed

1 1 1 1 1
2 2
3 -T 1 1
4 3
5
3 2 3 3
4 4
5
3 T 3 3
4 5
5
3 5 3 5
4 6
5
6

In the table above, an asteriskindicates a place where we performed an addition operation.
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The algorithm finds that the largest subsequence sum is 5, achieved by the subsbquamnte
from the 3 to 5" positions.

Notice that this algorithm only requires at most one addition operation for eaehofpl
greater than 1 and less than or equdd.tdHence, for a sequence of lengththe algorithm will
perform fewer thamN addition operations! (In our analysis, we ignored the cost of performing
the checks for when something is greater than zero. These checks are la|duirgince they
are done just twice for each valug &fom 2 toN [once to check iM(j — 1) > 0, and once to
check if a larger value dfl has been discovered], these checks do not change the efficiency of

the algorithm.)

The work involved in this algorithm is therefd®N). Algorithms that ar€©(N) are
referred to adinear time algorithms. The first brute-force algorithm we considered caibic
time algorithm, and the second algorithm we consideredgsadratic time algorithm.

Let’'s see how our latest algorithm compares to our other algorithms. The chert bel
shows how many addition operations each algorithm must perform for various sequesice siz

Sequence Length Algorithm 1 Algorithm 2 Algorithm 3
5 20 10 4
6 35 15 5
10 165 45 9
100 166,650 4,950 99
1000 166,666,500 499,000 999

(The numbers under “Algorithm 3” are the maximum number of addition operations needed.
The algorithm might perform fewer additions, depending on what the input sequence is.)

Wouldn't you much rather do Algorithm 3 instead of one of the others, given a sequence
of length 100 or more?

Remember the longer sequence | gave you at the beginning of Part 1? Diablythe fi
maximum subsequence of that sequence? Find it using Algorithm 3 to check if yousgohthe
answer! For your convenience, here is the sequence again:

10 -8 4 2 -9 8 4 -10 -1 12
lst 2nd 3rd 4th 5th 6th 7th 8th 9th loth

For the answer, see page 29.

| hope this maximum subsequence problem has given you a sense of what peoplewbeside
they think about algorithms and why algorithms can be interesting and usefallpdstiwhen
solving large problems. | have shared just one small example. There are heameat
algorithms for important problems that people really care about! And we keeprigveeiv
ones all the time. | hope you find opportunities to learn more about them. For meMbey ha
been the foundation of an interesting and rewarding career.



Star-Spangled Numbers

by Lightning Factorial | edited by Jennifer Silva
Emily and Jasmine decide to design a 51-star fle

Jasmine: | like Robert Heft's 50-star flag design

Emily: | do too, but I'm curious, what do you like
about it? Robert Heft designed the US flag’s 50-star field.

Jasmine: Well, if I'd made it, | probably would've
put the stars in a blocky 5 by 10 rectangular array. The way Heft did it, infeeésdynamic.

Emily: It's actually two rectangular arrays, one embedded within tier.ot

Jasmine: Hey, you're right! It's a 4 by 5 rectangular array of staida a 5 by 6 rectangular
array of stars.

Emily: Why don’t we try a similar pattern for a 51-star flag?
Jasmine: Okay!
Emily: Hmm. How do we figure out the dimensions of the rectangles?

Jasmine: Well, since we don’t know what the dimensions are yet, let's sapéneactangular
array isW stars byl stars.

Emily: Okay. If we want the inner rectangle to fit snugly inside the oatdangle, as in Heft's
design, the outer rectangle would have dimensiohstol byW + 1.

Jasmine: That means there would_NMéstars in the inner rectangle ahd+ 1)(W + 1) stars in
the outer rectangle, for a totallo#v + (L + 1)(W + 1) stars.

Emily: That simplifies to PW+L + W+ 1.
Jasmine: So we have to solve the equatloW2 L + W+ 1 = 51.

Emily: Wait a sec! Doesn’t that equation have tons and tons of solutions? | meaany
pretty much substitute any value\Wfand then solve fdr, right?

Jasmine: Yeah, but we nee@&ndW to be positiventegers

Emily: Oh yeah, that’s right. Well, we can still solve for, dain terms ofW, and then try to
see which integerd/ yield integer values df.

Both girls take a moment to isoldten the equation@N +L + W+ 1 = 51.



50- W

Jasmine: | goL = .
2W+1

Emily: | got that, too. But how are we supposeigure out when @/ + 1 divides evenly into
50 -wW?

Jasmine: | don’'t know. | guess we can just thyalues ofWfrom 1 to 51. We know thaw
can’'t be bigger than 51 since there aren’t mora 8fastars.

Emily: Actually, we just have to go untiV2+ 1 > 50 -W, and that happens wheiW3> 49. So
we only need to try numbers from 1 to 16 Waér That's not too bad. We might as well get
started.

wW 2W+1 50 -W (50 -W)/(2W + 1)
1 3 49 16 1/3

2 5 48 93/5

3 7 47 6 5/7

4 9 46 51/9

5 11 45 41/11

6 13

Jasmine: Emily, maybe all that work isn’t necegsdrust had a thought. What if we divide
50-W _ }+ 101 This

2W + 1 into 50 W using polynomial long division? We det =
g poly g de 2W+1 2 AN+ 2

is an integer if and only ifloil is a half-integer.
AN + 2

Emily: What's a half-integer?

Jasmine: It's a number halfway between two conseziuttegers: an odd number divided by 2.
Emily: Okay, but you know what? For some reasoemember that 101, 103, 107, and 109 are
all prime numbers. Since 101 is prime, we’ll ogbt a half-integer if W + 2 is either 2 or 202.

If 4W + 2 = 2 therWW = 0, which won't work. If ¥V + 2 = 202 theiW = 50, which means that

L =0, so that doesn’t work either. Hey, that wasmfaster than making the table!

Jasmine: Yes, but that also means that we carkera®d1-star flag in the form of a rectangle
embedded in a rectangle. Bummer!

Emily and Jasmine pause while they consider whebtwith this newfound knowledge. Then
they look at each other.

Emily: Are you thinking what I'm thinking?

Jasmine: You want to figure out for whditanN stars be arranged as a rectangle embedded in a
rectangle?

Emily: Exactly! How'd you know?
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By Anna B.

Mathematics is a journey of discovery. As mathamaais take this journey, they follow many wrong
turns, believe many incorrect facts, and encountany mysteries. Out of these twists and turns comes
the reward of truth and understanding. Howeveypifi look at math books, you might get the impraessio
that mathematicians rarely err. In this column, Argives us a peek into her mathematical process of

discovery, bravely allowing us to watch even assthmbles.
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Anna follows a hunch that connects a paraboloi $phere and obtains a neat result

Last time, 1 saw that
projection of a paraboloid
of revolution down to a

plane along lines parallel to
its axis sends cross-sections
to circles, lines, and points
and that every circle, line,
or point in the plane
arises in this way.

Gherecgrgue

?f:\,a&m*\

FE)C’((\ Wap Cioss-sechons o add Avcles RJ‘MES
(aml f)c.'rdh i e ‘)lqae 5 S

Some time passed when [
suddenly had a thought!

~ :
A paraboloid is the shape * of
used in telescopes to focus ,Pc\m\:»o\ﬁla = g h £
light coming in parallel to
the paraboloid's axis. If1
let a sphere settle at the
bottom with center at the
point of focus, could it be
that the light rays give the

desired map?

Mip)=p
\ W Comin c’h“‘} Dlw:\ N
bl oty
ks ‘mu‘oo\o»ﬂ & p M
Vo guates w\’her‘q
SQ‘nart CL:\' §>

Key:

Canna's thoughts)

Arnna's afterthoughts

Editor's comments

flus

(mfu&-cjlaiﬂ

1S M well -dedued ?

— % U[,.f‘aﬂ P:J‘ﬁs

e e

It reminded me of
stereographic projection.
Every circle, line, or
point in the plane is also
the image under stereo-
graphic projection of a
cross-section of a sphere.

It means there's a map from
paraboloid to sphere that
"commutes” with the two

projections S and O, that is,
a map that sends a point p on
the paraboloid to a point on
the sphere which is sent by &
to the same place where p is
sent by O

=
What could that map be???

That is, let p be a point on
the paraboloid. An incoming
vertical light ray comes in
and hits p, then bounces off
the paraboloid and heads to
its focus, which is the center
of the sphere. Let p' be the
point where this ray passes
through the sphere. Canl
define a map M that sends p
to p', and is it true that

SM(p)) = Op)?

That would be so cool!

© Copyright 2014 Girls’ Angle. All Rights Reserved



Arra’s Math Jewrmal

I et e R i A s it A e i e A e B A T e T T P N i U R PG S 0

© Copyright 2014 Girls’ Angle. All Rights Reserved 15




© Copyright 2014 Girls’ Angle. All Rights Reserved

16



In the last issue, we invited members to submiitemis to a batch of Summer Fun problem sets.

In this issue, we give solutions to many of thebems. Our solutions may be terse and, in
some cases, are more of a hint than a solutionpidfer not to give detailed solutions before
we know that most of the members have spent tiiné&itig about the problems. The reason is
thatdoing mathematics is very important if you want to learathematics well. If you haven't
tried to solve these problems yourself, you woaihgas much when you read these solutions.

If you haven’t thought about the problems, we uyrge to do sdeforereading the solutions.
Even if you cannot solve a problem, you will ben&bm trying. When you work on the
problem, you will force yourself to think about tiieas associated with the problem. You will
gain some familiarity with the related concepts #ns will make it easier to read other people’s
solutions.

With mathematics, don't be passive! Get active!
Move that pencill Move your mind! You might dis@ something new.

Also, the solutions presented aia definitive. Try to improve them or find differesblutions.

Solutions that are especially terse will be indidainred MembersandSubscribers

Please do not get frustrated if you read a solwiwhhave Don't forget that you are

difficulty understanding it. If you run into diffulties, we more than welcome to email

are here to help! Just ask! us with your questions and
solutions!

Please refer to the previous issue for the prohlems

17



Magic Squares

by Lightning Factorial

a b
1. Let c d be a 2 by 2 square of numbers. To be a magiagsgwa must have
atb=c+d=a+c=b+d=a+d=b+c.

Froma+b=a+c, we see thdt =c. Froma+b=a+d, we see thdt=d. Froma+d=b+d,
we see that =b. Hencea =b =c =d and distinct entries are impossible.

1 8 12
2. Here’'s a 3 by 3 magic squale8 7 - 4. There are infinitely many.
2 6 13
a b c
3.Letd e f bea3by3magic square. If we add both diagoiwathe middle row and
g h i

column we get:
(a+e+i) + (g+te+c) + (d+e+f) + (b+e+h).

NW-SE SW-NE middle middle
diagonal diagonal row column
This sum simplifiesta+b +c+d+ 4e+f+g+h+i. Using the fact that

S=za+b+c=d+e+f=g+h+i,

our sum can be written a$3 3e. Thus, $+ 3e =4S Isolatinge, we find thate = §3.

a b c

4 Weget_2a+ bt 4c a brc 4da b 2c_
3 3 3

2a+2b-c 2a b 2c- A Z2b 2«
3 3 3

Notice that setting = 1,b = 8, andc = 12 produces the magic square in our answer.to #2

X+z zZ- %y ¥ z
5. We get- x+ y+ z z X ¥ L
-ytz o Wz - %X Zz

Notice that ifx, y, andz are integers, this matrix
will consist entirely of integers. However, the
expressions in #4 may not result in integers even
if a, b, andc are integers.
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6. Suppose 0 x<y<z-xandy 2x
First, we’ll show that all the entries in the sgpiare positive.
Sincez—x >y, we know thak > x +y. Sincex andy are both positive,
we can conclude thatis also positive. Therefoset+ z, y +2z x +y +z andz will
all be positive.
Also, fromz—x >y, we see that—x -y > 0.
To see thatx+y +2z> 0, observe thate+y +z= (z—x-Y) + 2y, and botlz —x —y and
2y are positive. Similarly, we can see thaty + z> 0 becausg—-y+z=(z—x-y) + .
To see thaty+z> 0, note thaty+z= (z—Xx-Yy) + X
Finally, we're given thatx+z > 0.
We conclude that the square will consist of pesitiumbers.

Next, we’'ll check that all entries are distinctteat we may conclude that the square is,
in fact, a magic square.

First note thak +y+z>y+z>x+z2>z2>X+2>-y+z>z-x-Yy. This shows that
the 7 entries in the top row, bottom row, and ceate distinct.

Now observe that+z> x +y +z>2z This tells us that of the 7 entries from the
previous paragraph, the only one that~y + z might equal ix + z. However, if
—X+y+2z=x+z then X =Yy, which is not the case by assumption.

Similarly, observe that>x —y + z> -y + z, which tells us that of the other 8 entries, the
only one thak —y + z might equal is ¥+ z However, ifx—y +z= X + z, then again, 2=,
which is not true by assumption.

Thus, if 0 <x<y<z-xandy 2x, then the square will be a magic one.

7. All rows, columns and diagonals add umfe? + 1)/2. Hint: Add up the entries in a normal
magic square in 2 different ways.

8. The central number in a normal 3 by 3 magic sgjoaust be 5.
Solutions for 9 and 10 are omitted.

11. This is closely related to the representatiaih® numbers 0 through 15 in base 4n i§ an
integer between 1 and 16, inclusive Xd&te 4 ifn is divisible by 4 and let be the remainder left
whenn is divided by 4 otherwise. L&t=n—-x. Note thaX must be in the set {0, 4, 8, 12}.
Thenn=X+x. If n=Y +yis another representation within {0, 4, 8, 12} andyin {1, 2, 3, 4},
thenX —Y =y —x, which shows that —x is divisible by 4. This is only possiblext=y, and if

x =y, then alsX =Y, so the representation is unique.

12. This follows from #11.

13. There are 4! = 24 ways to assign the numbets&),and 12 to the variablasb, c, andd.
There are 4! = 24 ways to assign the numbers 3, &)d 4 to the variables , , and . Since
the assignment of numbers to the Latin variabl@sdspendent of the assignment of number to
the Greek variables, there are a total df2576 ways to make the number assignments.

The assignments are not all different in the

sense that some can be obtained from others
by rotations and reflections of the array.
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Center of Mass and Mass Points

by Girls’ Angle Staff
1. The ratio of the mass Atto that aB is 3 : 1.

2. A. A unit mass should be placed at veilBeso that the center of mass of the two masses at
verticesA andB is located aF. A unit mass should be placed at ver@=so that the center of

mass of the two massesfaandC is located aE.
To find out what we

B. The center of mass of the masse® ahdC is located at poiriD. mean by “piecemeal”
property of the center

Wi " ; of mass, see Volume
C. Use the “piecemeal” property of the center ofsn@ see that it must 7. Number 3 of this

be located on all 3 mediansD, BE, andCF, and hence the medians  Bulletin, particularly
are concurrent. pages 20-21.

D. The center of mass of 3 unit masses, one plaicedch vertex of the triangle, is located at the

intersection of the medians. Consider the medi@an We compute the center of mass of the 3
unit masses by first replacing the 2 unit masse®iatsB andC with a 2 unit mass located at
their center of mass, which is polbt We now compute the center of mass of the orig@nanit
masses by computing the center of mass of themass afA and the 2 unit mass Bt By the

law of the lever, we know that this center of magksplit the median into 2 pieces that are in
the ratio 1 : 2. The same argument can be apgiad 3 medians.

3. Label the vertices of the quadrilate#aB, C, andD, in clockwise order. Place unit masses at
the 4 vertices of the quadrilateral. Now comptgdenter of mass of these 4 point masses in
two different ways, using the “piecemeal” propeasfythe center of mass.

4. Hint: Think of each unit mass at each verteR af 2 point masses each of mass 1/2.
5. TheratidDX:DY=2: 1.

6. The angle bisector theorem tells us thédt YC=7 : 3 andBX: XC=7 : 6. Therefore, if we
place a 7 unit point mass@ta 3 unit point mass &t and a 6 unit point massBtthe center of
mass of the massesAaandC will be atY and the center of mass of the mass&aatdC will

be atX. Using the “piecemeal” property of the centenss, we conclude that the center of
mass of all 3 masses will beNMt We can then readily compute tii : MY = 10 : 6.

7. If we can assign point masse{d, andC so that their center of mass is locateB,ave
would then be able to compute the ratio of the litsigf trianglesABP andABC. Assign a point
mass of masato A, btoB, andctoC. We desiretha:b+c=5:8and:a+c=4:9. That
is,8a=5b +c)and & = 4@ +c). We solve this linear system famandb in terms ofc and find
thata = 5¢/4 andb = c. Hence, if we led = 5,b = 4, andc = 4, the center of mass of the 3 point
masses will be @&. LetF be where the cevian frofthroughP meetsAB. Using the
“piecemeal” property of the center of mass, we fimatFP : PC=4: 9. Therefore,
FP:FC=4:13. We conclude that the area of

triangleABPis 13(4/13) = 4 square units.
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8. Without loss of generality, we position a coaate plane so that the circumcircle has unit
radius and center at the origin. By rotating i€e&sary, we can ensure that one of the vertices is
atA = (1, 0) and the other 2 vertices are locatdslat{cosa, sina) andC = (cosb, sinb), where
0 <a<b<360°. The center of mass of the 3 equal ungsesiis located at the average of their
coordinatesP = ( (1 + cosa + cosh)/3, (sina + sinb)/3). In order for the center of mass of the 3
unit masses and the mamgo be at the circumcenter, we needb be on the circumcircle
oppositeP, and, by the law of the lever, we must have 3 P|, whereR)| is the distance ¢?
from the origin. Thereforey? = (1 + cosa + cosh)? + (sina + sinb)?. This can be rearranged
to n? = 3 + 2(cosa + cosb + cos@ —D)).

Now observe that
(-a+b)/2,
180 —b/2,

A
B
C al2.

and
Thereforen? = 3 + 2(cos € + cos B + cos ).
B. The centroid of the triangle is contained in ¢ireumcircle. Therefore, 0P| < 1. Hence,
0 nm?P=3+2(cos 2+ cosB+cosd)<0.
Equality holds if and only iff| = 0, and this can only happen when the triargégjuilateral.

9. At A, place a point mass of masgxXyy. At B, place a point mass of mass{yy. At C,
place two point masses, one of magsvxy and one of massxXvxXy. These masses are
specifically chosen so that the following 3 faats tue:

1. The center of mass of the point massésatdB is F.
2. The center of mass of the point mas& and the point mass @tof massxxwxy is E.
3. The center of mass of the point mad8 ahd the point mass @tof masxxvxy isD.

From fact 1, we know that the center of mass of aflasses is located alo@fF . Facts 2 and 3

combined imply that the center of mass of all 4seass also located alorgD. Therefore, the
center of mass of all 4 point masses is locaté&d ae can then apply fact 1 to deduce that

PF: PC= (xXwxy + xXVXYy) : (WxXyy + vxXyy).

This can be simplified tBF : PC = (wxy + vXy) : yy(w + V).
If xly =Xy, then

X, X X, X
W—+V W+ V—

PF_wxy+wWy_ 'y Yy _ y y_x>

PC  yy(w+ Y Y WV Y

10.A. The center of mass of unit point masses locdtedeh of the integers from Ong
inclusive, islocatedat (0 +1 +2 + 3 + ..n—1) +n)/(n + 1) =n/2.
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B. We claim thatnc =k + 1. To see this, we show that the center of asasEthe point masses
ato0, 1, 2, 3, ..nis located at @3. First, the weighted sum of the positions afepoint mass
from the origin, weighted by their masses, is

100+2(1)+32)+...An=-1) +a+1)N
’ (k+1Dk

k=1
= (k? + k)
k=1
= k2 + k
k=1 k=1
n(n+1)(2n+ 1)+ n(n+1)
6 2

Thetotalmassis1+2+3+...nH1)+n+(n+1)=f+ 1){+ 2)/2. Therefore, the center

of mass is located at—2 n(n+1)(2n+1) n(n+1)
(n+1)(n+2) 6

, Which simplifies to &/3.

C. WhenR =1 — 1p, wherep is a positive integer, we claim thag = - 2 +kCp - 2, WherenCx is
the binomial coefficienh choosek. This can be proven by induction. We omit theadie

20
11. We think of the plane as the complex planet ice e " . The vertices of the polygon are
located at 1w, w?, W%, ...,w"~tand the point mass &t has mask + 1. The center of mass of
these point masses is located at
n-1
L (k+D)w,
M o

K=

whereM is the total mass(n + 1)/2. To compute this sum, we use the algelidaictity

L s ae s, amo-is MHDCOCDE @ X

(2- x)*
(This identity can be derived in the following walyirst, note that 1/(1 ¥ is the sum of the
infinite geometric series 1%+ x% + . . .. If we square this, we find that 1/(¥)%is the infinite
series 1 +2+ 3%+ ...+ k+ 1x+.... If we subtract from this the quantity ¥(1 —x)?, the

first n + 1 terms will be unaffected but from the tes(1)X<, with k > n, we will subtract the
like term & —n)x¥, resulting in @ + 1) for all termsk > n. Therefore, if we subtract
(n+ 1IXY(1 —x) from (1 —x"*1)/(1 —x)?, we will obtain the above identity.)

We substitutev for x in the identity and divide by the total mass. eAfsimplification,

we find that the center of mass is Iocateel—:éti (-1, cotg). Asn tends to infinity,
n n
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Quadratic Reciprocity

by Cailan Li
(Recall that in this Summer Fun problem pedndq always denote distinct odd prime numbers.)

1. Starting fromax? + bx + ¢ = 0 (modp), we proceed by “completing the square” to trarrsfo
this equation to @« + b)? = b? — 4ac (modp). This shows thd#* — 4acis a square modulif
and only if there existg such thagx® + bx + ¢ = 0 (modp). (Sincep is an odd prime, ais
invertible modulap.)

2. (We should have asked to show thatrtblezerosquares modulp are given byg* where

1 <x<piseven, since 0 is a square modulaut isn’t a power of a primitive root.) The
nonzero residues modupoare given by, g% ¢, ...,g° "L If we square these, we will find all
nonzero squares modyo Thus, the set of squares agd g b, ...,g??~3}. Since

g°~1=1 (modp), we know thag® = g**P-1 This implies that

{ g PP ={ " ... Y,
as desired.

3. Problem 2 informs us that there gve-(1)/2 nonzero squares modplo We determine all the

squares to find the answers. Modulo 3, the square6 and 1, so% =-1. Modulo 7, the
squares are 0, 1, 4, and 2, hene?e =1. Modulo 13, the squares are 0, 1, 4, 9, 3ata 10,
hence 1—53 =-1. Modulo 19, the squares are 0, 1, 4, 9616/, 11, 7, and 5, henc?S3 =-1.

To compute %411 , we could systematically compute the 51 squareduhoadlO1 and check if

1041 is among them, though doing so would be tedidine development of the theory of
quadratic residues leads to much more efficientswedycomputing Legendre symbols.

4. From Fermat's little theoremx®{~ 32 = 1 (modp). Hencex?~ V2= +1 (modp). If

x =y? (modp), thenxP~V2=yP-D =1 (modp) by Fermat's little theorem. On the other hand,
xP-D2_1 =0 (modp) cannot have more thap £ 1)/2 roots. Since there ag< 1)/2 nonzero
squares modulp, all the non-squares must satigf V2= -1 (modp).

5. Did you figure out that, contrary to what we etk Fl =1ifand only ifp =1 (mod 4)? To

see this, we use Euler’s criterionis = (-1fP- V2 Thus, Fl =1ifandonlyif p—1)/2is

even, say equal tckZor some integek.
In that casep = 4k + 1.
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6. Ifk=j, then x| =|rj|. Assumeik|=|rj|. Therkb=4b (modp). Dividing byb, we see
thatk = 4 (modp), i.e. eithemp dividesk —j orp dividesk +j. Because botkandj are between
1 and p - 1)/2, inclusive, it cannot be the case thaf is divisible byp. Sok —j must be
divisible byp, and since botk andj are between 1 ang ¢ 1)/2, inclusive, we must hake=j.

7. From #6, the numbers, ro, r3, ...,rp- 12 consist of the numbers £1, £2, £3, ..p £(1)/2,
with a definite sign for each entry in this lidy definition ofN, there are exactlid negative
numbers in the list. Thug2b)(3b) --- (@ — 1)/2) = (-1)\-1-2-3---(p — 1)/2) (modp).

8. Using Gauss’s Iemma% = (-1)Y, whereN is the number df such that 1 k (p—1)/2

andrx = (-1k < 0. This is true for all sudh soN = (p — 1)/2. Therefore, -1 is or is not a square
modulop according to whethep( 1)/2 is even or odd, i.g,= 1 (mod 4) op = 3 (mod 4).

9. By Gauss’s Iemma,% = (-1, whereN is the number of such that 1 k (p—1)/2 and

r« < 0, wherea is the unique number betweep!2-andp/2 such thatk = 2k (modp). Of the
numbers 2, 4, 6, 8, .p,— 3,p— 1, the numbers up tp £ 1)/2 are congruent to positive numbers
in the range p/2 top/2 and the remaining numbers are congruent to ivegatimbers in the
range /2 top/2. ThereforeN is the least integer greater than or equapte 1)/4. If
p=1or7(mod8), theN is even and ip = 3 or 5 (mod 8), theN is odd. (Verify this!)

10. Using Euler’s criterion, we see tha)% = (xy) (P D2 = P Dizylp D2 = —)p( —;/ :
11. From #9, Z =-1 and Z =1. We computei = 1—3 = —3 = —5 = —2 =-1. We
3 7 13 5 5 3 3
3 19 1 . 1041 _ 31 _ 101 8 _ 2°
compute — =- — =- —=-1 Finally, — = — = — = — = — =1,
19 3 3 101 101 31 31 31

12. By Gauss’s Iemma,% =(-)" and g =(-D"%. Therefore% ap =(-D)N Mt

follows thatg = % if and only if (- 1)%*"= 1.

13. The diagonalD is on the lingpy = gx. Sincep andq are relatively prime, any integer
solutions to this equation must satipfyx andq |y. However, for pointsx( y) on the interior of
the diagonal, 0 x <p/2 and 0 <y < g/2.

14. Let @, b) be a lattice point in the interior bf above diagonaAD. By examining the
boundary of this region, we see that @ <p/2,galp <b <qalp + 1/2, ancdb <g/2. The second
of these inequalities is equivalent f@2-<qa—pb < 0. Therefor@aqis congruent, modulg, to
a negative number greater thgi2-and contributes to the valueMf. Conversely, for ang
between 0 ang/2 whereaqis congruent, modulp, to a number betweempk2 and 0, there is an
integerb such thatp/2 <ag—bp< 0. The left

inequality implies thab <agp + 1/2 < g + 1)/2.
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Sinceq is an odd prime anllis an integer, this implies thiat< g/2. Therefore,q, b)
corresponds to a lattice point in the interioHodnd above the diagonaD.

A similar argument shows thi is the number of lattice points in the interion-bf
below the diagona\D.

Combining this result with #13, we conclude tlnere aréN: + N lattice points in the
interior ofH.

15. The interior oH is defined by the following inequalities:

0<x<pl2
0<y<g/?2
Ox—0/2 <py<gx+p/2

Let (x, y) be a lattice point iid. Sincep andg are both odd, ((+ 1)/2 —x, (g + 1)/2 —y) is also a
lattice point. We now verify thatg(+ 1)/2 —x, (q + 1)/2 —y) is in the interior oH by checking
that its coordinates satisfy each of the ineqaliibove. Since 0x< p/2, we know that
(p+21)2—pl2<p+1)2—x<(p+ 1)/2, which simplifies to 1/2 p(+ 1)/2 —x < (p + 1)/2.
Since p + 1)/2 —x and p + 1)/2 are integers, ip(+ 1)/2 —x < (p + 1)/2, then in fact
(p+ 1)/2 —x<p/2. And since 0 < 1/2, we conclude that (p<(1)/2 —x < p/2.

Similar reasoning shows that O« 1)/2 -y < ¢/2.

Next, we compute that

q((p + 1)12 ) —g/2 q(p + 1)/2 —gqx—q/2

qp'2 —gx
gp/2 +p/2 —pl2 —gx
qp'2 +p/2 —py
p((q + 1)/2 ).

A similar computation shows thaf(q + 1)/2 —y) <q((p + 1)/2 —X) + p/2.

We conclude thatf(+ 1)/2 —x, (q + 1)/2 —y) is in the interior oH.

Now observe thax(y) = ((p + 1)/2 —x, (Q + 1)/2 —-y) if and only ifx = (p + 1)/4 and
y=(Qq+1)4. But(p+ 1)/4, g+ 1)/4) is a lattice point if and onlyfif=q = 3 (mod 4). So only
whenp =g = 3 (mod 4) will the number of lattice points hretinterior ofH be odd since all
lattice points in the interior dfl aside from (¢ + 1)/4, @ + 1)/4) can be paired with their image
under the involutory transformatior, )  ((p + 1)/2 —x, (g + 1)/2 —y).

A 11

16. From #14, the number of lattice points in titenior ofH is N1 + N2. From #15N; + N2 is
odd if and only ifp = q = 3 (mod 4). Thus% —2 = (- )%= -1 if and only if
p=q=3(mod 4). Thusg = % unlesg andq are both congruent to 3 modulo 4, in which

case © =- 4
p

q
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Signs of Permutations

by Ken Fan
1. In one-line notation, the permutation that leagach object in place is given by:
12345...(—1)n

2. Let’s build up the permutation step by step $signing a place for the object in tH&dbx,
followed by the 2 box, followed by the '8 box, etc. First take out all the objects.

The object from theSibox can be put into any of tikeboxes. The object from th&%2
box can be put into any box other than the one evtiex object from thelbox was placed. So
there aren — 1 choices for the object from th& Pox. After the objects from thé'and 2¢
boxes are placed, there are 2 choices for where we can place the object fituer8" box. By
the time we get to the object from theH 1)st box, there are onhy—k unoccupied boxes
remaining. Since each choice is independentaia¢ number of ways to rearrange the objects is
nn-1)n-2)---3-2-1nl. Here's atable of the first few valuesrof

n | » | 2 | 3 | 4 | 5 | 6| 7| 8
n!|1‘2‘6‘24‘120‘720‘ 5040‘ 40320

3. Withs=31524anti=5 2 4 1 3, if we applyfollowed bys, the object in box 1 will end up
in box 4, the object in box 2 will end up in boxtie object in box 3 will end up in box 2, the
object in box 4 will end up in box 3, and the objecbox 5 will end up in box 5.

4. In one-line notation, the permutation obtaingapplyings first, followed byt, is:
45321

This is different from what you get when you appfirst, followed bys, which, in one-line
notation, is the permutation 4 1 2 3 5.

5. We'll prove this by induction on. Whenn = 1, we adopt the convention that the empty
product corresponds to the permutation that leavesy object in place. When= 2, there are
only 2 permutations: 1 2 and 2 1. The first camdpgesented by the empty product and the
second is a transposition.

Now assume that every permutations on the nunibdgnoughN can be written as a
product of transpositions. We shall show that peynutation oN + 1 numbers can be written
as a product of transpositions.

Lets be a permutation on the numbers 1 throNighl. Suppose thafJ) =N+ 1. If
J=N+ 1, then the restriction afto the numbers 1 throughis a permutation of the numbers 1
throughN. By induction, this restriction can be writtenaaproduct of transpositions. If we
extend all these transpositions to transpositianthe numbers 1 throudt+ 1 by leaving the
object in boxN + 1 alone, we see thats a product of transpositions. So assumelXkatl + 1.

26



Lett be the transposition which swaps the objects xebdandN + 1 and leaves all the
other objects in place. Notice trs{N + 1) =N + 1. By the same reasoning of the previous
paragraph, we use induction to see #taan be written as a product of transpositiat: - -tm.
Thentitots: - -tmet is @ product of transpositions equakto

By induction, all permutations can be expressegragucts of transpositions.

6. A transposition swaps the positions of 2 objacts leaves all the other objects in place. Once
we have selected which 2 objects we are going &psthe transposition is determined. So the
number of transpositions is equal to the numbevayfs we can pick 2 objects framobjects.

We haven choices for the first object amd- 1 choices for the second. However, if we simply
take the produat(n — 1), we would be counting every possibility twsiace each possibility can
be selected in 2 ways, depending on which of take@ents is selected first. So the number of
transpositions is(n — 1)/2.

7. Sincel leaves all objects in place, there arexg), with 1 x<y n, such thap(x) > p(y).
HenceN(1) = 0. Conversely, supposép) = 0. Ifp(1) > 1, there must be sorke 1 such that
p(k) = 1. But then (1k) would be a pair of box labels such that B Butp(1) > p(K), in
contradiction to the assumption tiN(p) = 0. Thereforgy(1) = 1. By similar reasoning(2) = 2,
and so on for all the boxes. We conclude thi(p) = O, therp = 1.

8. If N(p) = n(n— 1)/2,everypair of box labelsx y), with 1 x<y n satisfie(x) > p(y). If
we letf be the permutation representediodyn — 1) —2) - - - 3 2 1 in one-line notation, thei
must satisfypf(x) < pf(y) for every pair of box labelx(y), with 1 x<y n (becaus&(x) > f(y)
and sapf(y) > pf(x)). From #7, it follows thagpf = 1. Thereforepff = 1f. Butpff=pl =p and

1f =f. Hencep =f.

9. Lett be a transposition that swaps the contents ofdiceedj with 1 i <j n. Throughout,
assume that 1 x<y n. We consider cases according to hoywf and {i, j} intersect. If

{x, y} and {i, j} do not intersect, thet{x) =x andt(y) =y. If {x,y} {i,j} ={i}, then either
x=iory=i. If x=1i, thent(x) > t(y) if and only ifj >y. Sincey > x, there are exactly—i
values ofy such that(x) >t(y). If x=j, thent(x) <t(y). By similar reasoning, we couni
ordered pairsx y) wheret(x) >t(y) and &, y}  {i,j} ={j} f{xy} {i,j}={i,j}, thenx=i
andy =j andt(x) >t(y). We conclude that there arg 2() + 1 ordered pairx(y) such that

t(x) > t(y). The (t) = (-1p0-D*1=-1,

10. Supposéswaps the contents of boxesndj with 1 i <j n. Then

p(x), if x* iandx |j
pt(x) = p()), if x=1
p(i), if X=j
LetS={(xy) |1 x<y nandp(x) >p(y) }andS={(xy) |1 X<y nandpt(x) >pty) }.

By definition (p) = (-1f°and (pt) = (-1**. We can also assume, without loss of generality,
thatp(i) <p(j), for if p(j) <p(i), we can simply switch the roles pandpt.
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10 continued. Throughout, assume <y n. We again consider cases according to how
{x, y} and {i, j} intersect. If the intersection is empty, theny( is in Sif and only if §, y) is in
S. If the intersection isi |}, thenx =1 andy = and since(i) = pt(j) andp(j) = pt(i), we know
that &, y) is in S but not inS (Recall that we are assuming tp@) < p(j).)

Now consider the cases where ¥} and {i, j} intersect in a single element. There are 4
such cases: eithar=i,x =j,y =1, ory =j. If x=1i, thenp(x) = p(i), pt(x) = p(j), andp(y) = pt(y).
If p(y) <p(i), then &, y) is in bothSandS. If p(i) <p(y) <p(j), then &, y) is inS but notS. If
p(y) > p(j), then &, y) is in neitheiSnorS. A similar argument shows thatif=j, then &, y) is
in bothSandS if p(y) <p(i), in Sbut notS if p(i) <p(y) <p(j) (note that unlike the cage=i,
here, more pairs end up 8than inS), and in neitheSnorS if p(y) >p(j). Therefore, the
casex =1 andx =] account for a net difference ofyfi <y <j andp(i) < p(y) <p(j)} more
pairs inS than inS

Similar reasoning reveals that the cages andy =] account for a net difference of
#{x |i <x<jandp(i) <p(X) <p(j)} more pairs inS than inS

Since the net difference from the cazesi andx =j equals the net difference from the
casey =i andy =j, all 4 cases wherex{y} and {i, j} intersect in a single element account for a
net difference of an even number more pairS ihan inS

The only case that affects the relative parity®a#d # is wherex =i andy =j.

Therefore, £and #5 are of opposite parity andpt) = - (p).

To show that (tp) = - (p), we can adapt the above argument or use invarsng that

(p) = (pY), wherepis the unique permutation that satisfidp = 1.

11. For #11, combine the results of #5 and #10.

12. Actually, the statement isn’t trugpi= 2. Did any of you catch that? So let's asstimagp
is an odd prime number. In this case, see Caikoligion to problem 2 of his Summer Fun
problem set on quadratic reciprocity on page 23.

13. Again, we must assume tlpais an odd prime number. pf= 2, then (s) = 1 regardless of
the parity ofk since, in this casg,= 1 andg® = 1 for allk. So assume thatis an odd prime
number.

If we start at any box and repeatedly appby the contents of boxwill go from x to ax to a®x to
a’x, etc. The contents of boxwill return to boxx whenever we applya total ofmtimes where
a" =1 (modp). The first time this happens is wherr (p — 1)/, p—1). From this we see that
thep — 1 boxes can be organized inpo(1)/n sets ofim boxes whera cyclically rotates the
contents of the boxes within each set in such athatyeach object visits each box in the set.
Such a cycle can be written as a producehef 1 transpositions (check this!). Theref@es a
product of fn— 1) — 1) transpositions and(s) = (-1Y™~Ve-VM  This shows that(s) = -1 if
and only if m— 1)(p — 1)mis odd, and this can only happemifs even andg— 1)mis odd. If
(p— 1)mis odd, then the highest power of 2 that dividesl must also divide, and this can
only happen ik is odd (since otherwisek, (p — 1) would be even and its factors of 2 would
cancel with factors of 2 ip— 1. Since is an odd primep — 1 is even, so the highest power of 2
that dividesp — 1 is at least 2. Therefore f € 1)imis odd, them will also be even.
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Calendar

Session 15: (all dates in 2014)

September

October

November

December

11 Start of the fifteenth session!

18
25
2
9
16
23
30
6
13
20
27
4
11

No meet
Emily Pittore, iRobot

Cornelia A. Van Cott, University of San Fraiois

Thanksgiving - No meet

Finding the Maximum Subsequence Answer (see pagét® maximum subsequence runs
from the & term to the 10 term (8, 4, -10, -1, 12) and the sum of this sgbeace is 13.
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fill out the ClutiEnrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Plelase addout your relationship to
mathematics. If you don'’t like math, what don't you like? If you love math, whavddoye? What
would you like to get out of a Girls’ Angle Membership?

The $36 rate is for US postal addresses oRly: international rates, contact us before applying.
Please check all that apply:

Enclosed is a check for $36 for a 1-year Girls’ Angle Membership.

I am making a tax free donation.

Please make check payable@®ixls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiltangle @gmail.com

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and excitg math can be! Make new friends!

The club is where our in-person mentoring takes place. At the club, girlsiweckly with our mentors
and members of our Support Network. To join, please fill out and return th&@alhment form.
Girls’ Angle Members receive a significant discount on club atteceléees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each member as igliéha@ind design
custom tailored projects and activities designed to help the mempenie at mathematics and develop
her thinking abilities. Because we believe learning follows nayundien there is motivation, our
mentors work hard to motivate. In order for members to see math as a liviniyecsabject, at least one
mentor is present at every meet who has proven and published original theorems

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the members how and for what they ugeaoia
member of the Support Network serves as a role model for the membersheFoipety demonstrate that
many women today use math to make interesting and important contributionsetg.soci

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We believe that when dagrsiafiorts are
actually used in real life, the motivation to learn math increases.

Who can join? Ultimately, we hope to open membership to all women. Currently, we are openilgrima
to girls in grades 5-12. We welcorak girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math or suffer fedmanxiety, math is worth
studying.

How do | enroll? You can enroll by filling out and returning the Club Enrollment form.

How do | pay? The cost is $20/meet for members and $30/meet for nonmembers. Members get an
additional 10% discount if they pay in advance for all 12 meets in a sessitsmaré&iwelcome to join at
any time. The program is individually focused, so the concept of “catchinglupheigroup” doesn’t

apply.

Where is Girls’ Angle located? Girls’ Angle is located about 12 minutes walk from Central Square on
Magazine Street in Cambridge, Massachusetts. For security reasonmagambers and their
parents/guardian will be given the exact location of the club and its ploomeer.

When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendar detailsepleas
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will be likeGirls’ Angle activities are tailored to
each girl's specific needs. We assess where each girl is matredipatnol then design and fashion
strategies that will help her develop her mathematical abilitieeryBudy learns math differently and
what works best for one individual may not work for another. At Girls’ Angle,re@ery sensitive to
individual differences. If you would like to understand this process in maaé, gg¢ase email us!
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we
rely on public support. Join us in the effort to improve math education! Pleaseymakdonation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has a Ph.D.
in mathematics from MIT and was a Benjamin Peirce assistant proféssattematics at Harvard, a
member at the Institute for Advanced Study, and a National Science Foundatidocporal fellow. In
addition, he has designed and taught math enrichment classes at BostonishMiiSeience, worked in
the mathematics educational publishing industry, and taught at HCSSiM. &eoluateered for

Science Club for Girls and worked with girls to build large modular origaajects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle realizeds goal of helping girls develop their
mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, executive director of Science ClubGats

Yaim Cooper, lecturer, Harvard University

Julia Elisenda Grigsby, assistant professor of prattics, Boston College

Kay Kirkpatrick, assistant professor of mathematig¢siversity of lllinois at Urbana-Champaign

Grace Lyo, Instructional Designer, Stanford Uniitgrs

Lauren McGough, graduate student in physics, Ptamceniveresity

Mia Minnes, SEW assistant professor of mathemalti€&sSan Diego

Beth O’Sullivan, co-founder of Science Club for I&ir

Elissa Ozanne, associate professor, The Dartmaosthute

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, assistant professor, University ofSMagton

Karen Willcox, professor of aeronautics and astatica, MIT

Lauren Williams, associate professor of mathemati€s Berkeley

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as
their desire to help others learn math. But does it really mattethat girls be instructed by people
with such a high level understanding of mathematics2Ve believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tackte/field regardless of the level of mathematics
required, including fields that involve original research. Over the destithe mathematical universe
has grown enormously. Without guidance from people who understand a lot of math, thihask is
student will acquire a very shallow and limited view of mathematicshenghtportance of various topics
will be improperly appreciated. Also, people who have proven original theamashesstand what it is
like to work on questions for which there is no known answer and for which tigitermot even be an
answer. Much of school mathematics (all the way through collegalvesvaround math questions with
known answers, and most teachers have structured their teaching, whetheustnscnot, with the
knowledge of the answer in mind. At Girls’ Angle, girls will learn tetgies and techniques that apply
even when no answer is known. In this way, we hope to help girls become solvergatfuthsolved.

Also, math should not be perceived as the stuff that is done in math klaksad, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can show girls how méghastreo their
daily lives and how this math can lead to abstract structures of enormenesi and beauty.
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Girls’ Angle: Club Enroliment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following peopl# ¢ allowed to pick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, suclasgies, that you'd like us to know about?

Photography ReleaseOccasionally, photos and videos are taken to deotiiand publicize our program in all media forms Wil
not print or use your daughter’s name in any waywe have permission to use your daughter’s imagéhese purposes?yYes No

Eligibility: Girls roughly in grades 5-12 are welcome. Althlowge will work hard to include every girl and torsmunicate with you
any issues that may arise, Girls’ Angle reservediilcretion to dismiss any girl whose actionsdigeuptive to club activities.

Personal Statement (optional, but strongly encouraged!)}Ve encourage the participant to fill out the
optional personal statement on the next page.

Permission: | give my daughter permission to participate in Girls’ Angle. | haael rand understand
everything on this registration form and the attached information sheets

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
Enclosed is $216 for one session | will pay on a per meet basis at $30/meet.
(12 meets) _ )
I’'m including $36 to become a member,
| will pay on a per meet basis at $20/me and | have selected an item from the left.

| am making a tax free donation.

Please make check payable@xls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with you to ths fireet.
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Personal Statement (optional, but strongly encouraged!)this is for the club participant only. How
would you describe your relationship to mathematics? What would you like to gdtymuir Girls’
Angle club experience? If you don'’t like math, please tell us why. If you lotle, piaase tell us what
you love about it. If you need more space, please attach another sheet.

Girls’ Angle: A Math Club for Girls
Liability Waiver

I, the undersigned parent or guardian of the valhg minor(s)

do hereby consent to my child(ren)’s participaiioiirls’ Angle and do forever and irrevocably r&te Girls’
Angle and its directors, officers, employees, agemnd volunteers (collectively the “Releaseesdirfrany and
all liability, and waive any and all claims, fojumy, loss or damage, including attorney’s feesgny way
connected with or arising out of my child(ren)'stg@apation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissidGols’ Angle or any of the Releasees. | forevelease,
acquit, discharge and covenant to hold harmlesRéweasees from any and all causes of action anuslon
account of, or in any way growing out of, direabhyindirectly, my minor child(ren)’s participation Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further ideig all
claims or rights of action for damages which my onichild(ren) may acquire, either before or afteron she
has reached his or her majority, resulting froncamnected with his or her participation in Girls\@le. | agree
to indemnify and to hold harmless the Releaseeas &lbclaims (in other words, to reimburse the Reées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdire cost of
defending any claim my child might make, or thagimibe made on my child(ren)’s behalf, that isasésl or
waived by this paragraph), in any way connectetl witarising out of my child(ren)’s participatiam the
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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