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An Interview with Radmila SazdanoyiPart 2

Ken: How tantalizing! Do you have any advice for how to best approach learnthgmmtics?

Radmila: There is no one best way, but it is definitely useful to have an active approado. Try
relate the math you are learning to the math you already know. When you leatiisgmew

try to understand why is it true, why is it important, how can it be generalizedking for
generalizations of mathematical concepts or new relations betweentbbjeate well known

often lead to new discoveries!

Ken: When you get stuck on a problem, what kinds of things do you do to try to get unstuck?

Radmila: Most practical solution is to .

partition the problem into things that are Ken: ...Did math always
difficult for me and things that | know | can i )

do more quickly. Then I do the easy thing: Gons eaSIIy to you:

first and hope that by the time | have to de

Wlth the not-so-easy parts | will hqve new Radmila:Math demystified:
ideas how to approach them. Doing math

a bit like putting the pieces of some bigger YOU have to work hard.
puzzle together except that you do not kna

exactly how it should look like in the end.

Ken: You are also a visual artist. For you, what is the relationship between thetlds of art
and math? Has one world informed or inspired work in the other?

Radmila: In the Renaissance — and earlier — the concepts “science” and “art” werstimat.di
The idea of visual perspective originated in art studios and preceded projective@iutide
geometry by roughly 2 centuries. Leonardo Da Vinci and Albrecht Durer tuehgrsg
polyhedra.

Since Romanticism the artist has been viewed as someone who does not think
analytically, maybe has messy hair, etc. But it is not true that argst®Banalytical. Cubism,
for example, is an attempt to render in a single painting the information about enobitgened
from several different viewpoints. This is not so different from the insight lynagEinstein’s
theory of relativity, namely that the way we perceive something depends upon our dvam pos
(and momentum). It is maybe just a coincidence, or maybe not, that Cubism awitdyrelate
roughly contemporaneous, and that Einstein had messy hair, too. (Hilbert just wiyrbat.3il

Ken: | really like “Sea Pearls” and “Seven Towers.” Can you elaborate onhe®& works
relate to the hyperbolic plane?

Radmila: Both “Sea Pearls” and “Seven Towers” are tessellations of the hypeplaoie. If
you are not familiar with the hyperbolic plane, you can think about it as a sgis&iah which
dots that are really far away from us (hence should look small) are thogelyse to the
boundary circle. Tessellation is an arrangement of shapes closely fittdtetogspecially of
polygons in a repeated pattern without gaps or overlapping.
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The Stable Marriage Problem

Part 3. Provable Truths
by Emily Riehl, illustrated by Julia Zimmerman, edited by Grace Lyo

In the last two installments, we introduced

a problem and proposed a means for finding it< -

solution. The problem was to arrange marriac @ﬂ@&
with the goal of stability: no unmatched couple
should simultaneously prefer each other to the
current partners. The matches are determinel
thegirl-proposing algorithm: the girls propose
to their top choices and the boys reject all but
their best suitor. The rejected girls then make
second proposal, and then the boys have a cfr
to reject previous suitors in favor of a new one
This process repeats until everyone is engage

Some proofs It remains to prove that this idea actually works. We separated this question up
into two parts:

Theorem 1 The Algorithm always terminates.
Theorem 2 The arranged marriages are stable.
Let’s prove them.

Proof of Theorem.1The algorithm stops when every boy is engaged — this also means that
every girl is engaged, since the numbers of boys and girls are the same.eBhahohce a boy
becomes engaged he never becomes unengaged; he might change partners bullenisdot
to break an engagement in favor of becoming single again. So the first moment thatsno bo
single is exactly when the last boy is proposed to for the first time. And tsishappen
eventually because the number of boys who have been proposed to will only ever jiacr¢ase
any perpetually single girl will eventually propose to all the boysusscahe has ranked each
boy in the village on her list.

A more precise argument can be used to determine the maximum number of days it wil
take before the algorithm terminates. Complexity theory, a branch of cemspignce,
investigates how long it takes to complete a given task.

Now let us prove that our algorithm solves the original problem: arrastabie
marriages.

Proof of Theorem .2

! This content supported in part by a grant from\éorks.
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(Unscrambile this) Proof of Fermat'’s Little Theorem

Every word in S,, can be obtained by starting with w and, one by one, moving the first letter to the
end of the word. Since w is a word with p letters, if you repeat this process p times, you arrive back
at w. Therefore, S,, has at most p words in it.

Theorem. Let p be a prime number. Then p divides n° — n for any positive integer n.

Notice that for any word w’ in S,,, we have S, = S,,. This implies that S,, and S, are either equal to
each other or disjoint for all words w, v in W. Therefore, we can form a partition of W by taking the
sets S,, for w in W and removing duplicates.

Let w be a word in W. Let S,, be the set of words that can be obtained from w by cyclically rotating
the letters of w. That is, if w’ can be obtained from w by taking a block of letters from the front of w
and shifting them to the end of w, then w’ is in S,,. Since cyclically rotating letters of a word
preserves its length, S, is a subset of W.

If Sy, has less than p words, it must mean that as you rotate by one letter at a time, you get some
word duplication. That is, there must be some word v in S,, where, if you remove some k (less than p
and greater than 0) letters from the front of v and move them to the end of v, you get back the word
v. But this means that the first letter of v must be the same as the (k + 1)st letter of v, which in turn
must be the same as the (2k + 1)st letter of v, etc. More precisely, the first letter of v must be the
same as the (mk + 1)st letter of v for any integer m, where by “(mk + 1)st letter of v’ we mean that
you have to consider the remainder of the quantity mk + 1 divided by p (and if the remainder is 0, that
stands for the last letter of v).

Since there are exactly n different words in W where every letter is the same (one for each letter in
the alphabet), our partition of W contains exactly n subsets with a single word, with the rest
containing p words. We conclude that W has n + pM words, where M is some integer (equal to the
number of subsets in our partition that have p words).

We claim that the remainders of mk + 1 form =1, 2, 3, ..., p are all distinct, because if any of these
had the same remainder, say ak + 1 and bk + 1, with a < b, then p would divide their difference (bk +
1) — (ak + 1) = (b — a)k, but both b — a and k are positive integers less than p, so that is impossible.
Thus, every remainder is obtained as m changes from 1 to p. But that means that the first letter of v
must be the same as every other letter of v. and S,, consists of this single word.

To summarize, S,, either contains p words or 1 word, and if it contains 1 word, it is a word whose
letters are all the same.

Proof. Imagine an alphabet with n letters. Let W be the set of all p-letter words made using this
alphabet. (We're not concerned with whether the words make sense or are pronounceable.)

Therefore, n° = n + pM, and this tells us that p divides n° — n.

There are n choices for each letter, so the number of words in W is nP.

For example, if p =5 and w is the word “GOOSE,” then S,, = {GOOSE, OOSEG, OSEGO, SEGOO,
EGOOS}.

Reorder the rectangles so that the resulting text forms a coherent proof of Fermat’s little
theorem. (Note: The above proof is a combinatorial proof and does not address the
case when n 0. As an additional problem, extend the proof to cover all integers n.)



By Anna B.

Mathematics is a journey of discovery. As mathamaais take this journey, they follow many wrong
turns, believe many incorrect facts, and encountany mysteries. Out of these twists and turns some
the reward of truth and understanding. Howeveypifi look at math books, you might get the impressio
that mathematicians rarely err. In this column, Argives us a peek into her mathematical process of
discovery, bravely allowing us to watch even assthmbles.
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Divisibility Rules

by Ken Fan / edited by Jennifer Silva

Are there easier ways to figure out if a number is divisible by another numhber tha
performing long division? The answer is yes. Perhaps you are alreatigrfanth “casting out
9's” as an example of one of these “divisibility rules.”

Casting out 9’s says that a number is divisible by 9 if and only if the sum of s idigi
also divisible by 9. For example, the sum of the digits of 1,234 is 10, which is not divisible by 9.
Therefore, 1,234 is not divisible by 9. (For more on casting out 9's, see thePsagba del 9
in Volume 2, Numbers 1 through 5, of this Bulletin.)

The following table lists the more common divisibility rules:

A number is divisible by... |Iif...
2 its units digitis 0, 2, 4, 6, or 8.
3 the sum of its digits is divisible by 3.
4 the 2-digit number comprised of its rightmosti@itd is divisible by 4.
5 its units digit is 0 or 5.
6 the divisibility rules for both 2 and 3 work.
8 the 3-digit number comprised of its rightmostiitd is divisible by 8.
9 the sum of its digits is divisible by 9.
10 the units digit is 0.
11 the alternating sum of the digits is divisible1d.

These rules may seem like a lot to memorize. Some rules pay attention thtiinestgdigit,
others have you adding up all the digits, and one asks for the alternating sum atshdrditis
article, we're going to show that these rules are all reflectionsingke siniform procedure.
We'll then apply this procedure to obtain a divisibility rule for 7.

The Basic Principle

The basic principle we will use over and over is this: if two numbers differ hyltgoha of d,
then the two numbers leave the same remainder when dividied by
If you don’t understand this principle, perhaps the following way to visualize diviagibili
will help. When we say a numbeis divisible byd, this means that when you dividdoy d you
get a whole number. Imagine that you work as a packager for a chocolatg. fa@aive got a
vat of chocolates that you have to put into boxes. You must pack exatibcolates in each
box. Ifnis divisible byd, then you’re in luck. You'll be able to put each and every chocolate
into a box with none left over. Butrifis not divisible byd, then you’ll end up with a few
chocolates left over, not enough to fill another box. The number left over is the remaiede
you dividen by d.
Suppose you've just spent hours packing chocolate boxes and there are a few chocolates
left over. After all that packing, you're about to treat yourself to theirengachocolates as a
small gift for all of your hard work. But just as you’re about to pick up one of thosalent
morsels, your boss drops another load of chocolates onto your desk. If the number of Additiona

13



chocolates is divisible bg, then you can imagine that they'll all perfectly fill out some number
of boxes, and you'll still have the exact same set of chocolates left over onegturThis
illustrates that adding a multiple dfdoesn’t affect the remainder.

Applying the Basic Principle

If we want to figure out the remainder that a numbleraves when divided by, the basic

principle allows us to add or subtract multiplegldd our heart’s content. If we knew the largest
multiple ofd less than or equal t§ we could simply subtract that multiple to find the remainder.
But the problem is that this multiple is not readily apparent without dividimgd. To avoid
having to divide, we’ll instead exploit the information that the number gives us by virtue of
being represented in the usual decimal notation. When written in this format, the pb@rs
play a prominent role. Each digit tells how many groups of some power of 10 that the number
contains. Thus, the number 352 has 3 groups of 100, 5 groups of 6= 10, and 2 groups of
10° = 1. Sojf we find a multiple ofl that we can subtract from each power of 10 to yield a
small number, we can remove these multiples from each group tifet@by obtaining a much
smaller number that will have the same remainder as the original number.

For example, consider the number 5000. Let’'s use the idea presented in the preceding
paragraph to figure out the remainder of this number when we divide by 9. The numeral 5000
represents 5 groups of 1000. The number 999 is the closest multiple of 9 to 1000. When 999 is
subtracted from 1000, the answer is 1. So we subtract 999 from each group of 1000, reducing it
to a group consisting of just 1 object. Since there were 5 groups of 1000, we end up with 5
groups of 1, or 5 objects. Therefore, 5000 and 5 leave the same remainder when you divide by 9.
If we divide 5 by 9, we get 0 with a remainder of 5. So 5000 is not divisible by 9 and, in fact,
leaves a remainder of 5 when divided by 9.

For divisibility by 9, we can see that the numbers 9, 99, 999, 9999, etc., are each 1 away
from 10, 100, 1000, 10000, etc., respectively. So we can reduce each grotiplgéds to a
single group consisting of 1 objeeithout affecting the remaindefThe figure below illustrates
this process for the number 542.

Figure 1. Suppose we want to know what the renegindl be if we divide 542 by 9. The left
panel breaks the number 542 into groups of 100's, &nd 1's, according to the number’s
customary decimal representation. In the secondlpthe multiples of 9 nearest to each power of
10 are subtracted from it. The basic principlelaixgd in the text tells us that subtracting
multiples of 9 will not affect the remainder. Afteubtracting the multiples of 9, the 100, 10, and
1 in the decimal expansion are effectively replagét 1, 1, and 1. We conclude that 542 and
5(1) + 4(1) + 2(1) = 11 leave the same remaindeenndiivided by 9. Since 11 leaves a remainder
of 2 when divided by 9, so will 542. Of course,amhyou apply this procedure, you can skip all of
the intervening steps and simply add up the diditse intervening steps are shown here to
explain why adding up the digits works.

14



Let’s apply this method to obtain divisibility rules for the numbers 2 through 11. For
each divisod, we need to figure out what multiple @fs closest to each power of 10. We can
then subtract this closest multiple from the power of 10 to obtain a magical seqianogoers
that will produce our divisibility rule.

10° 10 100 | 166 | 1 | 100 | 1@

2 10° 10° 10* 10° 107 10* 0
0 0 0 0 0 0 1

3 999999 | 99999 | 9999 | 999 99 9 0
1 1 1 1 1 1 1

4 10° 10° 10* 10° 107 8 0
0 0 0 0 0 2 1

5 10° 10° 10° 10° 10° 10 0
0 0 0 0 0 0 1

6 1000002 | 100002 | 10002 | 1002 | 102 12 0
2 2 2 2 2 2 1

7 999999 | 100002 | 10003 | 1001 98 7 0
1 2 -3 -1 2 3 1

8 10° 0 10° 10° 96 8 0
0 0 0 0 4 2 1

9 999999 | 99999 | 9999 | 999 99 9 0
1 1 1 1 1 1 1

10 10° 10° 10* 10° 107 10" 0
0 0 0 0 0 0 1

11 999999 | 100001 | 9999 | 1001 99 11 0
1 -1 1 -1 1 -1 1

In the table above, each divisor’s row is split into two rows of numbers, one blue and the other
red. The blue numbers are the nearest multiples of the divisor to the power of 10 heading that
column. (Sometimes, there are two nearest multiples to a power of 10. Howevesjthe ba
principle informs us that it doesn’t matter which multiple you use.) The red nuareetse

result of subtracting the nearest multiple from the corresponding power of 1Ocoldri-coding
corresponds to the color-coding in Figure 1.

If you know modular arithmetic, then you can also interpret the red numbers as flumber
close to zero that are congruent, modlto each power of 10. Robert Donley made similar
computations ifFermat’s Little Theorem, Part, 2n the previous issue of this Bulletin. Using
the technique he used, the magic sequence can be constructed by multiplying eaciumiagy
by 10 to get the next (moduth). The red numbers are eventually periodic. Can you see why?

Let's examine the row corresponding to the divisor 4. The magic numbers, read from
right to left, are 1, 2, 0, 0, O, .... This means that for a given numker compute the generally
much smaller number by taking 1 times its units digit plus 2 times its tensthigismaller
number will leave the same remaindenashen divided by 4. For example, to find the
remainder of 4,267 when divided by 4, we compute 2(6) + 7 = 19. Since 19 leaves a remainder
of 3 when divided by 4, so does 4,267. (If you don’t see what remainder you get when you
divide 19 by 4, you can apply the rule again to 19: 2(1) + 9 =11, and againto 11: 2(1) + 1 = 3.)

Perhaps you are thinking, “Wait a minute! The divisibility rule for 4 saysythashould
take the rightmost 2 digits and consider them as a 2-digit number, not twice thayiieplsisli
the units digit!” That works too, and aligns with our analysis. It correspondsvindehe first
power of 10 (which is 10 itself) alone, and not subtracting a multiple of 4 from it thegatagic
number 2. Doing so makes it easier to find a reduced number to work with becauseagihe 2-di
number comprised of the rightmost 2 digits of the original number is sitting bheforia plain
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sight. Replacing the 10 with a 2 requires more computation, but the reduced number will be
smaller than the number you get by chopping off the rightmost 2 digits. Incpracte

whatever method you find easier, but do understand how the two are related and that both are
applications of the same general method.

Divisibility by 7
Let's examine the row corresponding to the divisor 7. The Method in a Nutshell

The magic numbers read fromright to left are: 1, 3,2, ;, ., integed > 1. Let's group the
-3, -2, and then they start repeating. We ask, what is t integers intad different sets according

remainder when 104,202 is divided by 77? to the remainder that the integers leave
We write the digits of the number we are testing When divided byd. (Integers are in
with the corresponding magic red numbers below: 1= SELE S [ Sl @iy sy elifes
by a multiple ofd.)
1 0 4 2 0 2 Example: ifd = 2, then the integers
2 -3 -1 2 3 1 will be grouped into evens and odds.

We then compute the number obtained by adding up t| Modular arithmetic is based on the
observation that addition and

products of each digit and its corresponding magic red multiplication respect these sets. That
number: 1(-2) + 4(-1) + 2(2) + 2(1) =-2-4+4 + 2 =0 s, ifaanda belong to a set anbland
We conclude that 104,202 will have the same remaind b’ belong to a set (possibly, but not
as 0 does when you divide it by 7; that is, 104,202 is a necessarily, the same as the one
multiple of 7! Verify this by using long division. Do yol ;,Oi‘tg!m?"z‘ﬁ?fg‘:i)';hrizﬁi““lg 3?3
fin(_j I_or_1_g division faster or slower than using the andab anda’ b’ mediﬁer b}?a
divisibility rule? multiple ofd.

Notice that the magic number in the’ place is _
the negation of the magic number in th@ 1¥place. We Therefore, if we expand a numbeas
can use this fact to conclude that any number whose ig@?;?g'sﬂgll'gp*i‘iﬁbi}?ﬁg fho(;"’se;mo‘;
dlg'ItS are of thg f_qrm ABC,ABC will be d|V|S|pIe by 7. et as that power, the resulting
Using the divisibility rule for 7, can you see right away expression will evaluate to a smaller
that the number 123,124,234,235,345,346 will leave a number in the same set that contains
remainder of 3 when divided by 7? Thatis the method in a nutshell.

Other Bases

The magic numbers associated with each divisor are specific to decimal surtilyeu
represent numbers in other bases, you have to compute new magic numbers to suit those base
But some patterns persist in all bases. For instance, a nar@ases the same remainder when
divided byb as the sum of its baket 1 digits. The magic sequence for the divisarith
respect to powers d¢f+ 1 is a sequence consisting of just 1's. Similarlypfor2, a numben
leaves the same remainder when divided bg the alternating sum of its bdmse 1 digits
(starting with the units digit and working left).

To test your understanding of these ideas, try to use them to produce a solution to the
following problem: If 2 + 1 is prime, show thatis a power of 2. For a hint, turn this page
upside down:

! This is problem 1.12 from Harold DavenpofTise Higher Arithmetic8" edition. There, he further asks if the
converse is true. That is,rifis a power of two, does'2 1 have to be a prime number?
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Divisibility Rules Problems

Here are some problems that will help you master the content of DiwjsRilles on page 13.

Subscribers, feel free to send in your questions and solutigngsengle @gmail.com

1. (Created by Stuart Sidney) ¢toe a positive integer. L&N) be the sum of the decimal
digits of N. What isS(S(S2012%)))? What isS(S2013°)))?

Divisibility Rule for 27. Problems 2-4 pertain to divisibility by 27.

2. Use the method fromivisibility Rules(p. 13) to deduce the following facts.

L"# 8 I % &
(
( )
*0p+,
( -

)
/
!
0 1'& 2 0
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Fermat’S thtle Theorerh, Robert Donley runs the YouTube

channel MathDoctorBob, which has over
Part 3 650 videos on close to 20 math subjects.

by Robert Donley / edited by Jennifer Silva

In the previous parts of this series, we investig&tunat’s little theorem: If we
choose any primp and any integem, thenp dividesm? —m. With p = 7 andm = 4, the theorem
states that 7 divides evenly intb-44 = 16380 = 7 - 2340. In the language of modular
arithmetic, we write this asf = m (modp). (Recall that we writa = b (modn) if and only ifn
divides evenly int@ —b. Alternatively,a andb have the same remainder upon divisiomby

In Part 1, we gave a proof using the binomial theorem, which relied on properties of
prime-numbered rows in Pascal’s triangle. In part 2, we recast thethesra statement about
periodicity of remainders modujwfor powers of a fixed integer. In this part, we will exploit
another property in the set of remainders for a given divisomgive yet another proof of
Fermat’s little theorem. This time, however, our approach will actuadlg w generalization of
the theorem, freeing it from the condition tpdie a prime number.

Before presenting this new proof, let's do some exercises to get acensaf happens
whenp is not a prime number. So let’s begin by following the development in Part 2 and
consider the remainders of geometric sequences with respect to a fixed .ntHobever,
unlike last time, we’ll allow this fixed number to be any positive integer, nopjuse numbers.
So letd be any positive integer. For example,det 8. Let’'s examine the remainders of powers
of 3 when divided byl. As noted in Part 2, we don’t actually have to calculate the powers of 3
to do this since we’re only interested in the remainders these powers leadkvalteg by 8.

We readily compute that the remainders of the powers of 3 when divided by 8 are:

3,1,3,1,3,1,3,1,3,1,3,1, ...

Please verify and complete the following table:

Table of Powers Modulo 8

4 S 6 ! 8 9 10 11

=
MINI =1
R ROIN
w|o|k|o]|w

0
1
0
1

wlo|r|o
R|lolk|o
wlo|r|o
R|lolk|o
wlo|r|o
R|lolk|o
wlo|r|o

7n

What patterns do we observe now? Firstyi§ even, sayn = 2k wherek is an integer, then
m' = ()" = 2'" will be divisible by 8 whem 3 (and possibly for smaller valuesmgftoo).
That is, powers of even numbers will eventually be divisible by 8. While thesefadseto a
predictable pattern, we never return to the original remainder unless it is 0.

! This content supported in part by a grant from\éorks.
18



On the other hand, we see a familiar pattemig odd. The sequence of remainders is
immediately periodic, and there exists sdaseich tham = 1 (mod 8). Last time, we saw that
in the case whed is a prime number that does not dividewe could define the ordeg(m) to
be the smallest positive integesuch thatr = 1 (modd). In a similar manner, we see that 3, 5,
and 7 all have order 2 modulo 8.

Make a table similar to the table one the previous pag##d, 9, 10, and 12. For what
values ofm will the powers ofn eventually leave a remainder of 1 when dividediby

Did you see that the answer is exactly wheandd share no common factor other than
1? That is, there exists a positive intelgetch that = 1 (modd) if and only ifm andd are
relatively prime. See if you can prove this. A proof can be constructed aldimethef those
used in Part 2. This observation enables us to extend the definition of order to all positive
integersd andm relatively prime tad. In this case, we defir®g(m) to be the smallest positive
integerk such tham = 1 (modd).

(By reworking the development in Part 2 with a non-prime modijluse developed a
sense for some of the similarities and differences between prime and nemuoanli. Recall
the Challenge from Part 2 which asked you to show that @iea prime number, there exists
m such thaby(m) =d — 1. Give an example to show that this is no longer true @ienot
restricted to being prime.)

Finding a positive integdewherem = 1 (modd) was key to our proof of Fermat's little
theorem last time. Our observations to this point show that this is only possiblewainelal
are relatively prime. Therefore, the concept of being relatively prime leustry important.
For this reason, let us defikk to be the set of all integemsbetween 1 and that are relatively
prime tod. Note that we can multiply two elementslfto get another element Bf;, modulo
d. Thatis, ifmandm are relatively prime tal, then so isnm. For example, whed = 8, we
find thatUg = {1, 3, 5, 7} and we have the following multiplication table working modulo 8:

Multiplication in Ug modulo 8
a

b 1 3 5 7

1 1 3 5 7

What do you notice about this table? What do you think would be true not just of this modular
multiplication table, but for the modular multiplication table hrin general?

Let's define (d) to be the number of elementsip. For example, (8) = 4. This
function is known aguler’s totient function. We may now state the generalization of Fermat’s
little theorem, due to Euler:

Euler's theorem. Letd be a positive integer. thandd are relatively prime, thethdivides
m@—1. Thatism @ =1 (modd).
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Proof.? Choosen relatively prime tad, and consider modular multiplication byas a map
from Ug to Ug. If mm = mm (modd), thend dividesmm —mm = m(m, — ). Sincem andd
are relatively primed must dividem, —ny, that is,; = m, (modd). Thus, modular
multiplication bym is a one-to-one mapping: distinct elementtl@fmap to distinct elements.
SinceUy is a finite set, modular multiplication oy merely permutes the elementdf That
is, if Ug = {my, ..., m g}, then we also havlly = {mm, ..., mm @}, where the elements in each
list are the same but may be listed in different orders. This fact can bia seemodular
multiplication table folUg on the previous page: note that all 4 elementds@ppear in each
row (not including the row heading, of course).

Now consider the product of all elementdgfmodulod. We have

M- M @=mm---mmg=m9m-.m q) (modd).

From the first part of the proof, we can cancel eaclnom both sides of the equation, leaving us
with the statement of Euler’s theorem.

Notice that Fermat's little theorem follows from Euler’s theorem oncelygerve that
(p) =p - 1 wherp is a prime number.
Whend = 8, we know (8) = 4 and Euler’s theorem tells us that the fourth power of any
odd integer will be 1 more than a multiple of 8. In fact, if a fourth power is equal to 1 modulo 8,
then the 8, 12", 16", etc. powers will also be equal to 1 modulo 8. So without having to do any
further computation, we can say definitively that 289%= 1 (mod 8).

An important feature of the above proof deserves its own mention:

Cancellation Law for Ug. Supposenis relatively prime ta. If mm =mm (modd), then
my = m, (modd).
Notice that we can effectively realize the cancellatiomtyy multiplying both sides byn @1
as Euler's theorem implies. For this reason, it is sensible to defirs m @ ~*in modulard
arithmetic whem is relatively prime tal. If we wish to solve the equationx=a (modd), we
simply have to multiply both sides ™.

As a final note, we indicate how to compufd). If pis a prime number arld 1, then

Upk is obtained by removing the multiplespfrom {1, 2, 3, ...,p}. Since there are exactly
pYp =p*~! multiples ofp removed, we see thafp®) = p*—p*~%. To compute (d) in general,
we can use the fact thafab) = (a) (b) whena andb are relatively prime. (Can you prove
this?) Thus, if the prime factorization @fs p x x ., where thep; are distinct prime numbers,
then

(p- Ixx¢p 3
Py X %R

d=d

For instance, itl = 72, therp, = 2 andp, = 3 and we find (72) =72 - 1/2 - 2/3 = 24.

2 The proof given follows a line of reasoning duelémes Ivory. For further reading, see “Eulersdiem” by
Keith Conrad atvww.math.uconn.edu/~kconrad/blurbs/ugradnumthyféute. pdf
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by Cammie Smith Barnes / edited by Jennifer Silva

In the review chapter that | teach for my precalculus class, we studyaioe £
simplifying rational expressions. By “rational expressions,” | meatidracthat have
polynomials in both the numerator and the denominator. One pet peeve | have regarding the
simplification of rational expressions is that students often forget thakfression

(x- D0 2)
(x- D(x+ 2)

. : X= 2 . .
is not exactly equivalent to the expreSS|<)9(11—2. In the April 2011Errorbusters! we discussed
X

how to simplify rational expressions correctly, but we did not identify therdifice between the

two rational expressions | have just shown you. It is true that the first e@rpresaplifies to

the second by cancellation of the common factor-efl in both the numerator and denominator.

However, notice that one can substitute 1 into the simplified expression (to obtain -1/3),

whereax = 1 cannot be substituted into the first expression because you cannot divide by 0. So

the original expression cannot have 1 in its domain, whereas the simplified expression can.
Therefore, to make it clear that we don’t wish to inadvertently widen the dovhain

we simplify a rational expression, we need to stipulate that we are notragltve simplified

expression to be evaluated at any points missing from the original expressioais.démother

words, for our current example, we need to explicitly statexthdt for the simplified

.o X-2 . .
expressmnTz; without such a statement, there would be no way for someone to know of this
X

condition from the expression alone.
, . : . . x*-5x+ 4

Let’s try to simplify a more complicated rational express:%‘.. - Ex & where we
will take the domain to be the set of all real numbers where the denominator is nabéqual
We begin by factoring both the numerator and the denominator as much as possiigle thattr
you can use to factor this particular numerator is tg se€ and note that

X' =BC+a=y' -5 +da=F-1)F-4) = - 1)K -4).
Using differences of squares, we can factor this further:
0¢ - 1)6¢ - 4) = g+ DK - D + 2)x— 2).

For the denominator, we observe that there must be at least one real rootisiaciiiic
polynomial (with real coefficients). By the rational root theorem, we kinavit the root is a
rational number, then it must be an integer that divides 6, i.e., it must be £1, +2, £3, or £6. We'll
test each candidate, starting with 1. We comptite(¥) — 5(1) + 6 = 0. This shows that 1 is a
root! Sox — 1 is a factor. Dividing, we find that — 2¢ — 5+ 6 = k — 1)¢¢ —x — 6). We then
factor the quadratic factor to gét— 2¢ — 5+ 6 = k— 1)K + 2)(x — 3).

Now we can simplify the original rational expression:

X*-5x°+ 4 (& D(x Dx 2)(x 2)_ & Dx 2
X-2X- 5% 6 (X DX 2)x 3)  -x 3
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We mustspecify thatx 1 or -2 in our new expression. To be thoroughshauld also state
thatx 3 since the denominator is O when 3. This condition will not likely be neglected,
however, because the simplified expression mahjfeathnot be evaluated whers 3.

Let’s try another example:

x3-19x 30
XC+7x2+2x- 40

Simplify

where the domain is all real numbers where the hémattor is not 0. Both the numerator and
denominator are cubic polynomials (with real cardiints), so each has at least one real root.
Hopefully they'll be integers! For the numeratpotential rational roots are all divisors of 30,
which are: £1, +2, +3, £5, +6, £10, 15, and £89. systematically trying these one after the
other, we happen to find that= 2 is a root. You could continue through thedisdivisors of
30 to try to find other integer roots, but we’ltfar outx — 2 to get a quadratic, and then factor
the quadraticx® — 1% + 30 = &k — 2)¢¢ + 2x— 15). By factoring the quadratic, we arriveha t
complete factorizatior® — 1 + 30 = & — 2)( — 3) + 5).

The same approach enables us to factor the deatoninEventually, we find that

X+ B+ 22— 40 = k- 2) + 4)(x + 5).
We can now simplify our original expression:

X*-19% 30 _ (¢ 2)(x 3)K 5) x
CH+TX+2x- 40 (% 2)(* 4)(x 5) x <

We mustspecify thak 2, -4, or -5.
Here’s another example for you to try. Simplify

X +3x°-10% 24
XC+4x%- 9% 36

wherex can be any real number where the denominatorti®.n€an you show that this rational
expression is equivalent to

X+2
X+3

for real numberx -4, -3, or 3?

For practice, simplify each expression and spebtiédydomain of the simplified expression. In
each case, the domain of the given expressioreisghof all real numbers where the
denominator is not equal to 0. Note that the namoerof the fourth expression is the same as the
denominator of the fifth expression. The answarslze found on page 29.

1. x?- 25 2. x?-T7x 12 3. X*+5x*-4x 20 4 X+6xX°+11x+6
x?- 3% 10 X2 - 5y+ 4 x> +10x° + 31x+ 3C XC+3x°- 9% 27

5. X+2x¥%-x 2 6. x*+5x%+2x-8 1. x*- 10x*+ 9 8. x*- 34x%+ 225
XX +6x>+11x+ 6 X2 +6Xx+8 XCH+2x2 -1 12 x* - 13x°+ 36
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Invention 5

In the previous issue, we described 8 math problehese we claimed that different people
would likely come up with different solutions. Hei’d like to describe two different, partial,
solutions to Invention 5, which was to find a wayctt a square into pieces that can be
rearranged to forml squares all the same size.

We'll address the cad¢ = 3, where we have to cut a square into piecasctrabe
reassembled to form 3 squares all the same size.

Method 1. For definiteness, assume that the given sqeaeinit square. A natural way to start
is to cut the square into 3 identical 1 by 1/3alagtes. Then, if we can figure out how to convert
one such rectangle into a square, we just repedairticess on the other two.

Since we know that the desired squares will We then make cuts so that the These rectangles can
triangles and parallelograms can be then be stacked to

bey1/3 on aside, we lry to make shapes formed into rectangles that all have  form a square, and

that have sides with this length. This can be we're done
done with two parallel cuts forming two one side of length/1/3. :
right triangles and a parallelogram.

Method 2. This method was invented by Luyi Zhang, a Giflegle mentor. She chose to start

with a square\/:_% units on a side so that its total area is 3 squaits. The goal then becomes to
build 3 unit squares. She began by inscribinguasgjof area 2 (shown in blue) inside the
square of area 3. By snipping 2 of the 4 riglatnigular fragments along the altitudes to their
hypotenuses, we get 6 right triangles that carebganged to form the pink rectangle in the
figure. Because the pink rectangle consists afgsdeft after removing 2 square units from a
square of area 3 square units, it must have asgadre unit. Therefore, the pink rectangle has

dimensionsy/2 by J2/2. The blue square and pink rectangle can thendsected into 4
isosceles right triangles which can be fit togetefiorm the sought after 3 unit squares (see
bottom right). We’'ll leave further details to treader. The motivation behind inscribing a
square with area 1 square unit less than the &rtba given square is that it might lead to an
inductive method for solving the general case (s$ecting a square into pieces that can be

rearranged to forml squares). That is, to dissect ilNG

1 squares, we inscribe a square of &éato a square of

areaN + 1 and use

induction to treat the

square of arel and

find a way to fashion

the 4 left over right

triangles into a unit

square. Can you

extend Luyi’'s method

to the general case?
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by Barbara Remmers | edited by Jennifer Silva

Oh look! Here comes 3/7, and she’s carrying a buakd wearing prize ribbons on her dress.

You: Hi, 3/7. Those are nice ribbons. Have you lieemhorse show?

%; Why, no. I've been to something far more excitisigail races.

You: Snail races? |didn’t know that was a sport.

%; Oh yes, dear, it's all terribly exciting. I'm caaigning to have them added to the Olympics.

You: Really?

3 - Oh, yes. Let me show you some of my prizewinnétsre is Bertha. She blasts along at 1/2
meter per hour. This one, Fiona, races at 1 npetehour. This is Cordelia. She was

clocked at 3/2 meters per hour.

You: Oh ... well. So Fiona is right in the middle,Wwetn Bertha and Cordelia, speed-wise.

§; She is indeed, darling. | love them so! My h@ast swells with pride as | watch them
compete in the 100-meter sprint.

You: What? At Bertha’'s pace of 2 hours per metex réte takes over a week!

§; Yes, dear, but the action at the front of the famgpens much earlier. Fiona only takes one
hour per meter so she finishes in a mere 100 hdbosdelia’s pace of 2/3 of an hour per

meter has her finish in 66 hours and 40 minutdsat's less than 3 days.

You: Oh. |see. Hey, I just noticed something!

3 . . . . e
—: Do share it darling. But please remember, hdgriborses, one of many animals far inferior
to my lovely snails.

You: Sorry. What | noticed is that although the E\apeeds are equally spaced on the number
line — 1/2, 1, and 3/2 meters per hour — their palog which | mean the time it takes them to
travel a meter — 2, 1, and 2/3 hours per metee-nat.

3

2! That'’s correct, they are not. Nor would | exptbetm to be. Does that bother you?

You: A little.

%; Well, then, let’s talk about it.
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You: Umm. Okay. Here’s what bugs me. In both casese describing the same three snails
moving along.

3 .
2! Racing, my dear.

You: As they are racing along, not only are theiregiseequally
spaced, but Fiona will be

b"# 0 $ I % &
(
" ( )
*%_l_’
( -

)
/
!
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Notes from the Club

These notes cover some of what happened at GinigleAmeets. They are far from being
complete. In these notes, we include some oftimg$ that you can try or think about at home
or with friends. We also include some highlightsl aome elaborations on meet material. Less
than 5% of what happens at the club is revealeel. her

Session 12 - Meet 1  Mentors: Rediet Abebe, Ruthi Hortsch, Lauren McGough,
January 31, 2013 Isabel Vogt, Jessica Wang

One thread at the club concerns the “divisibilithes.” None of our members knew a
divisibility rule for 7, so we developed one at ttieb. See page 13. You know you've mastered

the divisibility rule for 7 when you can determimelatively quickly and entirely in your head,
the remainder that results when you divide theofeihg number by 7:

111,222,333,444,555,666,777,888,999,999,888,77/2660144,333,222,111.

What is it? Can you quickly figure out, entiretyyour head, the remainder after you divide this
next number by 7?

111,222,333,444,555,666,777,888,999,888,777,66@31883833,222,111.

At this meet#27 mentioned that her favorite number is 27. See dagfor a divisibility rule for
27 and other problems.

Session 12 - Meet 2 Mentors: Rediet Abebe, Elenna Capote, Jordan Downey,
February 7, 2013 Isabel Vogt

Some members unscrambled the proof of Fermats tlieorem on page 10. For yet
another proof of Fermat’s little theorem, see phge

Session 12 - Meet 3  Mentors: Rediet Abebe, Elenna Capote, Ruthi Hortsch,
February 14 2013 Jessica Wang

Some members began thinking about permutations eXample, suppose you have
sticks, no two of which have the same length. Téreyarranged from shortest to longest, left to
right. You want to reverse their order so thaytbe from longest to shortest, left to right. To
do this, you are allowed to make certain movesthWach move, you can switch the positions
of two adjacent sticks. What is the minimum numdfemoves needed to accomplish this?

Session 12 - Meet 4 Mentors: Rediet Abebe, Jordan Downey
February 28, 2013

More work on permutations, Fermat'’s little theoretvjsibility, and a new Community
Outreach problem from Jane Kostick.
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Calendar

Session 11: (all dates in 2012)

September 13 Start of the eleventh session!

20

27 Charlene Morrow, Mt. Holyoke
October 4

11 Pardis Sabeti, Broad Institute/Harvard

18

25 Anoush Najarian, MathWorks
November 1

8

15

22 Thanksgiving - No meet

29
December 6

Session 12: (all dates in 2013)

January 31 Start of the tenth session!
February 7
14
21 No meet
28
March 7
14 Iris Ortiz, Cambridge Systematics, Inc.
21 No meet
28
April 4  Crystal Fantry, Wolfram Research
11
18 No meet
25 Ashlee Ford Versypt, MIT Dept. of Chemical Eng.
May 2 Emily Riehl, Harvard University
9

The deciphered secret message at the end dfdtes from the Clubf the previous issue is:
GOOD JOB, YOU WOULD HAVE BEEN ABLE TO SOLVE ONE OFHE MATH TREASURE HUNT
PROBLEMS! LET US KNOW YOU SOLVED IT BY EMAILING USTHE EXACT NUMBER OF POSITIVE
DIVISORS OF TWO THOUSAND AND THIRTEEN. HAPPY NEW YAR!

Here are the solutions to this issuElsorbusters!problems on page 22:

1. x+5 2. x-3 3. x-2 4 (x+1)(x+2)
X -2,5 X 1,4 , X -5,-3,-2 - ,X #3
X+2 x-1 X+3 (x+3)(x- 3)
5. X-1 6. X—l,X '4, -2 7. X-1)(x+ 3 8. X+5)(x- 5
X -1,-2,-3 w,x -4,-1,3 M,x +2,+3
X+3 X+4 (x+2)(x- 2)
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Girls’ Angle: A Math Club for Girls

Gain confidence in math! Discover how interesting and excitg math can be! Make new friends!

What is Girls’ Angle? Girls’ Angle is a math club for girls and a supportive community for g gnd
women engaged in the study, use and creation of mathematics. Our primaoy msissifoster and
nurture girls’ interest and ability in mathematics and empower them to btodbtkle any field, no
matter the level of mathematical sophistication required. We affemprehensive approach to math
education and use a four component strategy to achieve our mission: Gitks’dergors, the Girls’
Angle Support Network, custom content production including our magazine, tkeABigle Bulletin,
and various outreach activities such as our Math Treasure Hunts andu@ityn@utreach.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each member as igliaha@ind design
custom tailored projects and activities designed to help the mempenie at mathematics and develop
her thinking abilities. Because we believe learning follows nayundien there is motivation, our
mentors work hard to motivate. In order for members to see math as a liviniyecsabject, at least one
mentor is present at every meet who has proven and published original theorems

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the members how and for what thety ugeaoia
member of the Support Network serves as a role model for the membershefodpey demonstrate that
many women today use math to make interesting and important contributionsetg.soci

What is the Girls’ Angle Bulletin? The Girls’ Angle Bulletin is a bimonthly (6 issues per year)
publication that features interviews, articles and information ofhemaatical interest. The electronic
version is free. The print version (beginning with volume 3, number 1) costei$a6 annual
subscription and brings with it access to our mentors through email. Sulsaordyesend us their
solutions, questions, and content suggestions, and expect a response. éilret&ngléts girls roughly
the age of current members. Each issue contains a variety of cdrdifgrant levels of difficulty
extending all the way to the very challenging indeed.

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We believe that when cagrsiafiorts are
actually used in real life, the motivation to learn math increases.

Who can join? Ultimately, we hope to open membership to all women. Currently, we are operilgrima
to girls in grades 5-12. We also aim to overcome math anxiety and build solidtfonadso we
welcomeall girls regardless of perceived mathematical ability. There is no esttast.

How do | join? Membership is granted per session. Members have access to the club where they work
directly with our mentors exploring mathematics. You can also pay per meittistalightly more

expensive. We currently operate in 12 meet sessions, but girls are wébcomeat any time. The

program is individually focused so the concept of “catching up with the group™tappty. If you

cannot attend the club, you can purchaBemoteMembership which comes with a year-long

subscription to the Bulletin. Remote members may email us math questtbonaghlwe won’t do

people’s homework!), send us problem solutions for constructive comment, aedtstggent for the
Bulletin. To become a remote member, you can simply subscribe to the priobarthe Bulletin.

Where is Girls’ Angle located? Girls’ Angle is located about 12 minutes walk from Central Square on

Magazine Street in Cambridge, Massachusetts. For security reasonmagambers and their
parents/guardian will be given the exact location of the club and its piuonieer.
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When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendar detailsepleas
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will be likeGirls’ Angle activities are tailored to
each girl's specific needs. We assess where each girl is matredipatncl then design and fashion
strategies that will help her develop her mathematical abilitieeryBudy learns math differently and
what works best for one individual may not work for another. At Girls’ Angle,re@ery sensitive to
individual differences. If you would like to understand this process in maaé, gg¢ase email us!

Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we
rely on public support. Join us in the effort to improve math education! Pleaseymakdonation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has a Ph.D.
in mathematics from MIT and was a Benjamin Pierce assistant proféssathematics at Harvard, a
member at the Institute for Advanced Study, and a National Science Founasatidocporal fellow. In
addition, he has designed and taught math enrichment classes at BostamMiScience and worked
in the mathematics educational publishing industry. Ken has volunteergdidoice Club for Girls and
worked with girls to build large modular origami projects that werglajgd at Boston Children’s
Museum. These experiences have motivated him to create Girls’ Angle.

Who advises the director to ensure that Girls’ Angle realizeds goal of helping girls develop their
mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, executive director of Science Club for Girls

Yaim Cooper, graduate student in mathematics, Princeton

Julia Elisenda Grigsby, assistant professor of mathesyd@bston College

Kay Kirkpatrick, assistant professor of mathematics, Ersitty of lllinois at Urbana-Champaign

Grace Lyo, Moore Instructor, MIT

Lauren McGough, MIT ‘12

Mia Minnes, SEW assistant professor of mathematics, UM&ao

Beth O’Sullivan, co-founder of Science Club for Girls.

Elissa Ozanne, assistant professor, UCSF Medical School

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, Tamarkin assistant professor, Brown University

Lauren Williams, assistant professor of mathematics, U®Rebzy

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as
their desire to help others learn math. But does it really mattethat girls be instructed by people
with such a high level understanding of mathematicsVe believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tackte/field regardless of the level of mathematics
required, including fields that involve original research. Over the ¢esfuhe mathematical universe
has grown enormously. Without guidance from people who understand a lot of math, thihask is
student will acquire a very shallow and limited view of mathematicstanihtportance of various topics
will be improperly appreciated. Also, people who have proven original thearmgshesstand what it is
like to work on questions for which there is no known answer and for which tigitermot even be an
answer. Much of school mathematics (all the way through collegalvesvaround math questions with
known answers, and most teachers have structured their teaching, whetheustnscnot, with the
knowledge of the answer in mind. At Girls’ Angle, girls will learn teigges and techniques that apply
even when no answer is known. In this way, we hope to help girls become solvergatfuthsolved.

Also, math should not be perceived as the stuff that is done in math klas=ad, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can show girls how méghastreo their
daily lives and how this math can lead to abstract structures of enormenesi and beauty.
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Girls’ Angle: A Math Club for Girls

Membership Application

Applicant’s Name: (last) (first)

Applying For (please circle): Membership Remote MembershipitB@idiscription

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

For membershig applicants only, please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following people will be allowed to pick up yoghtr. They will have to
sign her out. Names:

Medical Information: Are there any medical issues or conditions, such as allergies, thdtlikeuis to know about?

Photography ReleaseOccasionally, photos and videos are taken to document and publicize our progranedtiall m
forms. We will not print or use your daughter’'s name in any way. Do we have pemtissise your daughter’'s image for
these purposes? Yes No

Eligibility: For now, girls who are roughly in grades 5-11 are welcome. Although we will wathdarclude every girl
no matter her needs and to communicate with you any issues that magaisséngle has the discretion to dismiss any
girl whose actions are disruptive to club activities.

Permission: | give my daughter permission to participate in Girls’ Angle. | hawael rand understand
everything on this registration form and the attached information sheets

Date:

(Parent/Guardian Signature)

Membership-Applicant Signature:

Enclosed is a check for (indicate one) (prorate as necessary)
$216 for a one session Membership (which includes 12 two-hour club meets)
$36 for a one year Remote Membership (which includes 1-year subscriptiothetin
I am making a tax free charitable donation.

| will pay on a per meet basis at $20/meet. (Note: You still must retwsrfotii.)
Please make check payable@xls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA

02141-0038. Please notify us of your application by sending engiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with you to tis¢ fireet.
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Girls’ Angle: A Math Club for Girls
Liability W aiver

[, the undersigned parent or guardian of the valhg minor(s)

do hereby consent to my child(ren)’s participatioirls’ Angle and do forever and irrevocably r&te Girls’
Angle and its directors, officers, employees, ageaund volunteers (collectively the “Releaseesdirfrany and
all liability, and waive any and all claims, fonumy, loss or damage, including attorney’s feesgny way
connected with or arising out of my child(ren)’'stg@pation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissiéGols’ Angle or any of the Releasees. | forevelease,
acquit, discharge and covenant to hold harmlesRéweasees from any and all causes of action antslon
account of, or in any way growing out of, direabhlyindirectly, my minor child(ren)’s participation Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further ideig all
claims or rights of action for damages which my onichild(ren) may acquire, either before or afteron she
has reached his or her majority, resulting froncamnected with his or her participation in Girls\@le. | agree
to indemnify and to hold harmless the Releasees &lbclaims (in other words, to reimburse the Reées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdhe cost of
defending any claim my child might make, or thaghtibe made on my child(ren)’s behalf, that isasésl or
waived by this paragraph), in any way connectetl witarising out of my child(ren)’s participatiam the
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:

A Math Club for Girls
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