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From the Director

We're all set to begin session 6! All past members are warml
welcome back and we hope to meet some new faces. Pleas

spread the word!

Some exciting news: DKay Kirkpatrick a Courant instructor
and PIRE fellow at NYU has joined our advisory board. Kay
only brings mathematical expertise to Girls’ Angle, she also
brings with her extensive experience teaching children math.

Also, thanks to Science House, the Girls’ Angle Women in
Mathematics videos are now being produced. Conceived by
Girls’ Angle directorElisenda Grigsbythese videos will
showcase the diversity of women in mathematics todayren
McGoughhas constructed a webpage for these videos. Look
the first video on September 30 (see the cover).

Finally, I'd like to give a special Thank You @onnie Chow
and the Science Club for Girls for holding our treasury during
our nascent stage while we were awaiting 501(c)(3) status.

All my best,
Ken Fan
Founder and Director

Girls’ Angle thanks the following for their generous
contribution:

Individuals

Charles Burlingham Jr.
Anda Degeratu
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Corporate Benefactors

Big George Ventures

Girls’ Angle Bulletin
The official magazine of
Girls’ Angle: A Math Club for girls

» pglpangle@gmail.com

This magazine is published about six timeg

1(?jltbout mathematics.

Girls’ Angle welcomes submissions that
pertain to mathematics.

Editor: C. Kenneth Fan

f@irls’ Angle:
A Math Club for Girls

The mission of Girls’ Angle is to foster and
nurture girls’ interest in mathematics and tg
empower girls to be able to tackle any field
no matter the level of mathematical
sophistication required.

FOUNDER ANDDIRECTOR
C. Kenneth Fan

BOARD OFADVISORS

Connie Chow
Yaim Cooper
Julia Elisenda Grigsby
Kay Kirkpatrick
Grace Lyo
Lauren McGough
Mia Minnes

Beth O’Sullivan
Elissa Ozanne
Katherine Paur
Katrin Wehrheim
Lauren Williams

On the cover: Ina Petkova explains
proof of the Pythagorean theorem i
one of the upcoming Girls’ Angle
Women in Mathematics videos.

year by Girls’ Angle to communicate with it$

a

D

members and to share ideas and informatipn




by Allison Henrich

In the last issue of the Bulletin, we discussed the mathematical defmiteoknot and learned
some things about knots and their diagrams. We said that a “knot” is a knotted circlanYou c
think of it as a knotted piece of rope with the ends glued together. Recall that twe $anots

are the same if we can change one knot into the other by pulling, bending and streechopg t
without breaking it.

In many cases, people find it easier to think about and
communicate ideas about knots by drawing pictures (also knq

DWN
as “diagrams”) of them rather than making them out of rope. For
instance, if you wanted to tell your friend in California about &
cool knot you're learning about, it would be easier to e-mail her
a picture of the knot rather than send her a knotted piece of rppe
in the mail. This brings up a question we discussed in the las

Bulletin. Given two knot diagrams, how can we tell if they

) Figure 1: A diagram of the trefoil knot
represent the same knot or two different knots?

We looked at a partial answer to this question. We know that two knot diagrams are atjuivale
exactly when they can be related by a sequence of Reidemeister movagusee.

Reidemeister Move | Reidemeister Move I

Reidemeister Move Il

Figure 2: Reidemeister moves I, Il and IlI.




The problem is what if you have two diagrams of knots that you can’t see how ¢éaoedaich

other by a sequence of Reidemeister moves? If they are, in factndsagfrdifferent knots, how

can you prove it? (Indeed, a failure to prove something is not a proof that the oppesiterstat

is true!) There are many partial answers to this question that people have tfaghthere are
many more answers yet to be found. Can you think of a way you might be able to prove that two
knot diagrams represent different knots? For instance, how might you be able to shbw tha
trefoil knot from Figure 1 is different from the unknot? (Recall that the unknot is thehatot

can be drawn as a circle with no crossings.)

While | encourage you to think of your own way to solve this problem, | offer one solution. We
introduce the notion dficolorability. Let’'s say you have a knot diagram and three colors you
can use to color the strands of the knot. A “strand” in a knot will refer to a piedanof that

passes from one undercrossing to the next undercrossing in the diagram. Suppose you want t
color your diagram so that (1) you use at least two colors, and (2) at eachg;ribesthree

strands involved in the crossing are either all the same color or all diffeterg.cSee Figure 3

to get an idea of what this looks like.

Allowed Forbidden

Figure 3: Allowed and forbidden colorings at a sing

Let’'s look at some examples of colorings of knots to make sure we get the idea.tNatithe

unknot can’t be colored with all three colors, so it is not tricolorable. On the other hand, the knot
on the right (which is secretly a trefoil) is tricolorable because weezmit bas a valid coloring

that uses all three colors.

Not Tricolorable Tricolorable

Figure 4: Examples of allowable colorings of knots



Now, using the diagram of the trefoil from Figure 1, show that the trefoil ddrable.

What is really cool about tricolorability is that if a diagram of a knot e®korable and you
perform a Reidemeister move on the diagram, then the result is also tricolQabhgou prove
that this is true? For instance, can you take your tricoloring of the treforbdisand extend it to
a tricoloring of the diagram after you've performed a Reidemeister 2 move2btaw after a
Reidemeister 1 move? Use Figure 5 as your canvas.

Figure 5: Three diagrams of the trefoil (tricolbem!)

Now that we know that any two diagrams of the same knot must either both be tricolorable o
both non-tricolorable, can you show that the following two knot diagrams represerdrdiffer
knots? The knot on the left is called the figure-eight knot and the one on the right is called the

R §
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Figure 6: Is either of these knots tricolorable?

Now, to get more practice with tricoloring, make several of your own knot diagrahdassify
each of your knots as tricolorable or non-tricolorable. Notice that you have thgdaoaised to
prove in some cases that different diagrams of knots represent knots that dinediffarant.

Of course, this is not the end of the story. There are many examples of pairs of krarts that

both non-tricolorable or both tricolorable yet distinct from one another. That isvemged
many ways to tell knots apart. So, as food for future thought, I'll pose our core quesiiun ag

Can you think of any other ways you might tell
two knots apart?

Good luck and have fun!



An Interview with Rebecca Goldin, Part Il

This is the second part of the interview with Rebecca Goldin. Dr. Goldin is assooiatespr
of mathematics at George Mason University and also the director of reseSichTe.

Ken: You're also a mother of four handsome boys. | think that there is a feeling “@itttre,
especially for women, it is hard to have a family and a career in academiarevwavang both.
Did you ever feel that your family life and your career were at oddgifficult to be a
mathematician and raise a family?

Rebecca: This is a difficult issue. 1 am in an incredibly lucky position apthirg in my life,

with four healthy kids and tenure in a place | like. When | had the first two kidss &

postdo¢ and | knew that | was risking not being able to get a tenure?tjaizk This is for two
reasons: on the one hand, pregnancy and early childcare is exhausting and timengofemami
when you get daycare) and | was afraid | wouldn’t be able to do as much math. And derthe ot
hand, | had much less flexibility because of the kids— living separately frohuaiband for a
year, for example, was not a possibility. At that time, | had to ask mysedf lsard questions,
like whether | would resent my family if | didn’t manage to stay in mathiesiait’s

competitive. But | didn’'t have to think too hard about it, either— I love kids and I love
mathematics, and | knew that if | didn’t stay in the university setting, |duvoe happy doing
other fulfilling jobs involving math, such as teaching in a high school. When | realizate¢hat
“worst case” scenario with kids was really a great life, | stopped wayamd | never looked
back. The second pair of kids (one of whom | had while on tenure track and the other after
getting tenure) came along when | was much more established and feltdaiident that |
would be able to get tenure.

| know other women who felt they wouldn’t be happy doing any other job than beindna mat
professor— some of them delayed children until they were more establishedyenadl lsve
intimated that they would have been fine with not having kids. Others had kids while on tenure
track— and were pretty stressed out for a few years. Still others had krdsl ischool and

found it too demanding to finish, and still others decided to wait for children and then had
trouble having them. The decision about how to balance children and an academis caree
extremely difficult, and boils down to your own personal “imperatives” as muahyésirag

else. But if you do have kids while trying to manage any type of careerpgtemportant thing

you can do for yourself is to get a lot of help, with everything from housework to laundry t
daycare.

Ken: There aren’t very many women in mathematics today. Do you think themedsrdias
against women in the field of mathematics?

Rebecca: To the extent that gender bias exists today, it's much more subtieifeahto be. |
remember when | was in college 15 years ago, and the chair at the tiotegaliput from the
students to make the math department better. | suggested to the chair that veoendiopping
out of the math program partially because they were too intimidated to aslogsielsé stood up

! A “postdoc” (short for postdoctoral position) iseamporary job held by people who have doctorateles; A
typical postdoc position in mathematics lasts twthoee years.

Z A tenured position in academia can be held uetitement. In order to obtain tenure, one mustiked into a
“tenure-track” position, which is a job that colddd to tenure depending on the performance oétiigloyee.



and started screaming at me that women should “JUST RAISE THEIR HANDf was in

front of about ten people— | shrunk in my chair and a (male) colleague re-efpnegsdeas and

had a conversion with the chair about them. Little did | know that there was a lottiaSpoli

going on behind the scenes— about why there were no female faculty. But even then, men would
not make explicit comments about how women can’t do math— at least not in front of them- as
they did in the 70s and into the 80s.

Nowadays, there is little overt sexism, and | think much less overall sentimémiomen aren’t

as good as men. Very consistently, faculty will note that their best staderdsls— but this

doesn’t always extend into the graduate world. There may be bias behind impanitsiohde

such as who gets into graduate school or who gets a job, but it's much harder to put your finger
on it. For example, if a school emphasizes the math achievement test as amadmiisson,

is that discrimination if boys do better than girls on that test? A priorin$eer seems no— but

if other equally important skills such as taking and doing well in advanced maiteotarses

are de-emphasized, and women do better in these other fields, then it seems tisasdheze
inherent bias in the system— even without someone intending to discriminate.

The place where | see a bigger problem actually has to do with evaluation, prorealary,
and general career direction with women versus men. Many women still feel that\ive
burden of an academic job is larger for them than for their male counterparts.isTalsoe
evidence that women are paid less, given less lab space, and promoted lessyrequkatl
same level of accomplishments than men. This could be because women are lessragare
average than their male counterparts about getting higher salaries, but | do ttaiskathe
component of (perhaps subconscious) sexism. Not too long ago, | felt underpaid by my
department and a colleague commented “well, your husband is here, so you'rerstuck” (
husband is a professor in another department of the same university). | don’t kndaw if tha
comment would have been made to him if he were discussing his salary! Finally,maayy
women find it difficult to balance their rights for family leave with the seant that they will
be less respected if they take it in an academic environment— | hear magystorges from
female colleagues about inappropriate comments made by male colleagubte pus® out of
ignorance than out of sexism.

However, there are some people and organizations specifically interested inipgomarhen.

Last year, | was awarded the Ruth Michler Award for mathematidsebfgsociation for

Women in Math. | spent the semester at Cornell thanks to this award, and it has halbladl snow
effect. More visibility has led to better negotiations at my own job, severalmpgotrspeaking
opportunities, and generally a more prominent place within the mathematical cognmunit

Ken: Do you have any advice for the girls at Girls’ Angle?
Rebecca: Do what you love— and do all that you love. Don’t worry about what you think you

can or can’t do, or who you think is better than you. Trust your heart— and leave therjutigme
others.

% Lately, however, the concept that perhaps womerinmately inferior to men at doing mathematicsiking a
comeback. Some argue that there may be a vet sliference in average ability, and that thiglstidifference is
magnified at the tail end of the bell curve wherefpssional mathematicians reside. Girls’ Angkcaurse, does
not believe these arguments are sound. Also, teeenk of Hyde and Mertz which appeared in the Besiings of
the National Academy of Science counters such nstio



By Anna Boatwright

Mathematics is a journey of discovery. As mathemaais take this journey, they follow many wrong
turns, believe many incorrect facts, and encountany mysteries. Out of these twists and turns som
the reward of truth and understanding. Howeveypifl look at math books, you might get the impressi
that mathematicians rarely err. In this column, ArBoatwright gives us a peek into her mathematica

proces<of discovery, bravely allowing to watch even as she stumk

S

Here, Anna finds beloved factors of 15!. (A “beloved” number is a square of a perfact 3
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An Equilateral Triangle Problem

The figure below shows a red equilateral triangle inscribed in a blaclatgailtriangle. The
horizontal edge of the black triangle is perpendicular to the vertical edlge #d triangle.

What is the ratio of the area of the black triangle to the area of the reddgfiang|

When you get a math problem, try to get into the habit of playing with it beyondditiak
solution. Can you modify this problem and come up with a new math problem?

For example, what would the answer be if the red equilateral triangéeingeribed at different
angles with respect to the black triangle? What would analogous problems andsWweirsebe
for other polygons, such as isosceles triangles or squares?

Send your questions and answergittsangle@gmail.com
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The Euclidean Algorithm

by Doris Dobi

Recall that the greatest common divisor (sometimes called the “highraston factor”) of two
integersa andb (which we’ll denote by “GCIH, b)”) is the greatest positive integer which

divides them both. For example, GCD(3, 4) = 1 and GCD(-34, 119) = 17. For small iategers
andb, finding their greatest common divisor is easy enough since we can just exdlgusteck

all of the positive integer factors of the smaller of the two numbers. But, whaaifted to find
GCD(234125345234511113, 13998992200982823)? Since in general it is laborious to factor an
integer, as the numbers grow so does the amount of computation we have to do if we go through
the factors exhaustively.

The famous Greek mathematician Euclid came up with an efficient method to figicbttest
common factor of two integers. He described this method in his famoushekntswhich
appeared around 300 B.C. At the heart of Euclid’s method lies the following observation:
GCD(@, b) = GCDf@, b-a) =GCD@,b-2a)=...=GCD4§ b - ka) for any integek. Can you
see why this is true? Try working out some examples before reading fuRtileexample, try
computing GCD(14, 392) and GCD(14, 378). Can you prove this observation is true?

Let’s prove this observation. Lgt= GCDf, b). This means thaj divides botha andb. So we
can writea = ga andb = gby, wherea; andb; are integers. Them- ka=g(b; - ka;). This
shows thag divides evenly intd - ka for all integerk. So, to show thagj = GCDf@, b - ka), we
have to show thag is thegreatestpositive integer that divides botandb - ka. To see this, we
can go in reverse: if some integedivides botha andb - ka, then, using similar reasonindgy,
must divideb. But sinceg is the greatest common divisora&ndb, we would have to hawe

g. Henceg must be the greatest common divisoaaindb - ka.

Notice also that GCI( b) = GCD(, a), so we also know that GC&(b) = GCDf - kb, b) for
any integek.

Let’s see how this observation can help us find G8D214). By what we discussed above, we
may write GCD@8, 214) = GCDg8, 214 - 2x98) = GCDE8, 18). This reduces our problem to
one involving smaller numbers. Rather than directly compute the greatest comeonafio8
and 18, we can reduce even further!

GCD(98, 18) = GCD(98 - 5x18, 18) = GCD@, 18)

And further yet:

GCD(8, 18) = GCD, 18- 2x8) = GCD@, 2)

And why not still further:

GCD(8, 2) = GCD@ - 42, 2) = GCD(0,2) =2. Thus, GCDY8, 214) =2.

Notice that we never had to consider what the factors of the original nugtend 214 are.
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We can re-express the method described above in the form of a series of dividions wit
remainders:

214 = 2x98+18
98 = 5x18+8
18 = 2x8+2

8 = 4x2+0

What do you notice? First of all, notice that the last nonzero remainder is the aftaght-
greatest common divisor. Also, at each step we express the quotient as a witthiplprevious
remainder plus whatever is left over. The reason this works is precisalgrtigeargument given
above. In general, if we wish to find GGDP) we can proceed as follows:

a = goxb+ro
b = qgixrg+r;
fo = QaXry+r;
N = Qggxrz2+

In the case that < b, the first step of the algorithm just swaps the numbers so that the initial
guotientqgo will equal zero and, would equah.

When you divide, the remainders are always smaller than the divisor. lHeiscanaller than

its predecessak. 1 for all k > 0 until...one finally gets a remainder of zero. When a remainder of
zero is reached, we stop, and the penultimate remainder is the greatest commonfdasd

b.

This process of dividing by successive remainders until one arrives at ademafi zero to find
the greatest common divisor of two numbers is calle@Etldidean algorithm. Notice that the
algorithm must terminate because the remainders are all nonnegative andltptand
smaller. Eventually, one has to get to zero.

| conclude by mentioning some further generalizations of the Euclidean algdetunbed

above. This material is quite advanced, so don’t worry if you don’'t understand most of it. But
often it is helpful to be exposed to things even if they are too advanced. This articleedes

the original Euclidean algorithm, which is used to compute the greatest comvisam df pairs

of natural numbers. But, the algorithm can be generalized to apply to geoerajtlts (real
numbers), and, it was further generalized in the nineteenth century to other types efspumb

such asGaussian integergwhich are numbers of the form+ n+- 1, wherem andn are
standard integers). The algorithm can even bdexppd polynomials in one variable. Can you
figure out how? Here’s a hint: the Euclidean alipon consists of repeated application of
division with remainders. Can you figure out handitvide one polynomial into another?

. Take two consecutive Fibonacci numbers and apgl\ticlidean
Try th|S! algorithm to them. What happens? What do you lcadecs the
greatest common divisor of consecutive Fibonacoilmers?
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Population +
Elevation?

By Katy Bold

When you enter a new city or town, there is
usually a sign welcoming you. It usually

tells the city’s population and sometimes
also the elevation and the year the town was
established. The sign welcoming visitors to
Gold Hill, CO does more than just tell you
those three numbers — it also gives you their
sum!

“Why” you might ask, “would someone add

population, elevation, and date of

establishment?” | do not know, but it is a greatraple of someone forgetting to remember
units.

Though the example from Gold Hill may incite a felauckles, it is a
harmless error in units. There have been mistakidsunits with much
graver consequences. In 1999, NASA lost the Mars&ié Orbiter
spacecraft due to a mistake with English and metrits. One set of
scientists used the metric system, while anotheussed the English
system. In 1983, a commercial Canadian airplan@uaiof fuel because
of an improper conversion between pounds and lalogt Fortunately,
the pilots landed the plane and everyone survived.

Most of the United States uses the English systdme most of the rest
of the world uses the metric system.

Metric English
Length Meters Feet/ yards/ miles
Temperature Celsius Fahrenheit
Volume Liters Cups
Mass Grams Pounds

You may come across units and conversion of unievery day life, for example in cooking,
calculating gas mileage, converting currency whawaling, or when talking about the
temperature with a friend from another countrys ot mathematically difficult to convert
between units, as long as you keep track of whantifies you are dealing with.

When converting units:
Start with the known quantity
Multiply by conversion factors so that units cancel

Let’s convert between mL (milliliters) and cupsytu have a 330 mL juice, how many cups is
that? This is the conversion factor for cups and incup = 240 mL.
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So we can compute 330 mL 1cup
240 mL

=1.375 cups.

If you forget whether to multiply or divide by 24f@st remember that units should cancel, like
this:

330 il 1CUP _ 4 375 cups.

240 /mL

Most people need a calculator (or at least pencil@aper) to compute conversions. In day-to-
day life, though, you may not need an exact comwmergand there are some shortcuts that can
help you do the math in your head. The shortcutsectsom rounding the conversion factors to
numbers that are easier to work with.

For example, to convert between CelsiDsand Fahrenheik, the exact conversions

areF :gc +32 andC :g(F - 32). A shortcut that gives an approximate conversgdo

replace 32 by 30 an% by2: F 2C+ 30 andC %(F - 30).

Exact Conversion Shortcuts

Temperature | Fahrenheit =§Celsius +32 |F 2C+30

Lenath inches = 2.54 centimeters| | 2.5C
9 miles = (0.6213.).kilometers| M 0.6K Come up
with a good
Volume 1 liter = (4.2267..) cups "/ shortcut!

Mass | 1 kilogram = (2.204.).pounds

Try it Out
Estimate the conversions using a shortcut of yborae, then find the exact conversions. How
close (or different) is the answer from your shatr?cWhy?

Running races

A common race distance is the 5 K (5 kilometergwHnany miles is the race?

If the average running stride is 4 feet, on avetame many steps would someone take during
the race?

The length of a marathon race is 26.2 miles. Alawt many kilometers is this?
At the beach
My lItalian friend loves to go to the beach wheis i28 degrees outside. What! That would be so

cold! Oh, wait, my friend is Italian so probablyrtks in degrees Celsius. What temperature is
that in degrees Fahrenheit? Would you like to gthéobeach at that temperature?
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Fibonacci and the Angry Pigeon

Using the Pigeonhole Principle to Study the Fibonacci Sequence

by Lauren McGough

Even though the pigeonhole principle might The Pigeonhole Principle
seem like an “obvious” statement, it can lead to
non-obvious results! Here, we discuss the If you putn + 1 pigeons intm pigeonholes, at least one

solution to the last problem from my Summer pigeonhole will contain more than one pigeon.
Fun problem set from the last issue.

In order to tackle this problem, let's ask: Is tharway we can tell if the lastdigits of the
Fibonacci sequence are periodic after a pointfiniee amount of time? As humans with a finite
amount of computation time, we can't really justdgwn and compute all of the Fibonacci
numbers, and then check to see if they start reygeat some point. There are infinitely many
Fibonacci numbers and so going through this prosessd take an infinite amount of time.
Moreover, it could be

that the lash digits of
the Fibonacci numbers
don’t start repeating
until many, many
Fibonacci numbers
have gone by, so even
if we were to just start
computing, it might
take a very long time to
reach a point where we
see repetitions.

One place we might
start when thinking
about the digits of the
Fibonacci numbers is to
remember that the
Fibonacci numbers are

not random numbers,
and thus neither are their digits, in some sens&tWmean by that is: we must remember that
the Fibonacci sequence is generated fBcarrence relation -each Fibonacci number after the
first two is the sum of the previous two Fibonamgmbers. But then, notice that if each
Fibonacci number is the sum of the previous twak#zci numbers, the lasdigits of each
Fibonacci number are the lastligits of thesum of the lasmh digits of the previous two
Fibonacci numbers (where, if a number doesn’t medigits, we just fill in the missing digits
with zeros). (By “last digits”, | mean the rightmost digits.)

It turns out that this realization and a pigeonhwlaciple argument, is just what we need to
show that the last digits of the Fibonacci numbers are eventuallyquba.
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Let’s start by considering the periodicity of jalsé very last digit (i.e. the case= 1). Focus

your attention on pairs of consecutive last didits:1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 3), @3,

etc. If, in this sequence of pairs, a pair shop$hat has appeared before, then it must be the
case that the last digits of the Fibonacci sequaneeventually periodic. The reason is that
each Fibonacci number is determined only by therpwo, so if a pair appears again, the digits
that follow each of the two identical pairs will belistinguishable. This means that the pattern
of digits starting from the first of the identiqadirs to just before the second will repeat over an
over and over.

So, what we need to do is show that there aredemwtical pairs in our modified Fibonacci
sequence. Can you sniff an application of the mbete principle? After all, the pigeonhole
principle concludes that at least two things mesinthe same place... So, to this end, we
calculate an upper bound on the number of pospdils of last digits. Since there are ten
options for the first number in the pair (the ldigjit can be 0, 1, 2, 3,4, 5, 6, 7, 8 or 9), alsd a
ten options for the second number in the pairelaee 10 10 = 100 possible pairs of last digits.

By the pigeonhole principle, given 101 pairs ot [digits, at least two of the pairs must be equal.

So let’s consider the first 101 pairs of last digif Fibonacci numbers! By the preceding
argument, at least two of the pairs are equalvigut! That's just what we needed! Thus the
last digit of the Fibonacci sequence is eventuadigodic.

For the next question, we note that we can reploasargument for the last digit to work for the
last two digits and even the lastligits of the Fibonacci sequence without too muchkw We
simply pair off the Fibonacci numbers as beforeydhis time, we consider pairs consisting of
the lastn digits of numbers in the Fibonacci sequence. dagh pair of lash digits there are
(10"? = 10" possible values. Thus, if we take the first"#01 pairs of Fibonacci numbers, at
least two of these pairs will be equal, and thuswreclude by the same reasoning that thenlast
digits of the Fibonacci sequence will eventuallypeeiodic.

Do you understand why it was necessary to congidies of Fibonacci numbers, and how the
recurrence relation combined with the pigeonholeqgiple guarantee eventual periodicity?

Try your hand at the following challenge: the angunt above shows that the lastigits of the
Fibonacci sequence aggentuallyperiodic. But are they also actually periodic? (lholerstand
the difference, a sequence that starts out wemtlmbers 12, 13, 24, 52, 63, 74, would have a
periodic last digit if the last digits after thisipt continued to be 2, 3, 4, 2, 3, 4, ... fore\e,
would only have an eventually periodic last digivf a periodic last digit) if after this point the
last digits went 3, 4, 3, 4, 3, 4, 3, 4... forey&an you prove or disprove the periodicity (natju
the eventual periodicity) of the last digit of thlbonacci numbers? How about the last two
digits? Or the lagst digits?

And for more practice with the pigeonhole princjgly this:

Given a collection of N+2 integers, show that there exist two of them whose sum, or etse whos
difference, is divisible by 2N.
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In the last issue, we invited members to submiitsmts to a number of Summer Fun problem
sets.

In this issue, solutions to all of the problems@mavided. These solutions will sometimes be
rather terse and, in some cases, are more of ghlaimta solution. We prefer not to give
completely detailed solutions before we know thastrof the members have spent time thinking
about the problems. The reason is th@hg mathematics is very important if you want to learn
mathematics really well. If you haven't tried wig these problems yourself, you won't gain as
much when you read these solutions.

Solutions that are especially curt will be indichtered Please do not get frustrated if you read
a solution and have difficulty understanding itydu run into difficulties, we are here to help!
Just ask!

If you haven’t thought about the problems, we urge to do sdeforereading the solutions.
Even if you cannot solve a problem, you will beh&bm trying. Even more, it will become
easier to read other people’s solutions after yotried to solve the problems yourself.
With mathematics, don't be passive! Get active!

Move that pencil and move your mind! Your mind njagt end up somewhere no one has been
before.

Also, the solutions presented awat definitive. Try to improve them or find differesblutions.
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The Coin Flipping Game!

by Maria Monks

1. One coin is placed heads-up in each of the squara I 10 grid as shown below.

You play a game where one move consists of firgbsimg one of the coins and then flipping
over that coin along with any coin that is righknt® it. For example, you can form the
following pattern by choosing the first and sixthires in the row of coins above, then flipping
according to the rules:

You can make as many moves as you like. The gdaleéventually get the row to be all tails
up. Can you do this? What if you are not allowedHoose the first or tenth coin, that is, you
must always flip three coins? Can you do it if thesere only 9 coins in a row?

2. Now coins are placed heads up in each of the
triangles of a triangular grid with side lengthrdts
(each of the small triangles have side length 1).uni
A move consists of flipping a coin and all of its
“neighbors,” the coins that are in a triangle shguan
edge with the triangle containing the chosen odm.
the grid shown at right, the coin in the bottom dhed
triangle was chosen and flipped together with its
neighbors.) Can the grid be flipped to all tailghrs
manner? What if you start with a triangular gridtth
has side length 2? How about 47?

3. Now, suppose there is a coin in each of thersguat a 3 3 grid, starting
heads up. As before, you are allowed to make mowesisting of choosing a
coin and flipping over it and all its “neighborstie coins in the squares
sharing an edge with it. For instance, if you d@the coin in the middle to
flip first, you will get the pattern shown. Canwmake a sequence of moves
that makes all the coins tails up? What if youtstath a 4~ 4 grid? A5 5?
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Solutions (Maria Monks)

1. For a sequence of 10 coins starting heads upawenake a move on the first, fourth, seventh,
and tenth coins in the row to make the sequence shidails. For a sequence of 9 coins, we can
make a move on the second, fifth, and eighth cmimesult in a sequence of all tails.

The second question is more difficult. If you pkErgund with it for a while, it certainly seems
that you can't get the coins to be all tails irstivay. But how can we be certain that we’re not
missing some move? A nice way to simplify the peoblis to look at it from the point of view of
each coin. Pick a particular coin, say the foudimcThis coin can only be flipped when a move
is made on either the third, fourth, or fifth colurthermore, suppose we made a sequence of
moves that includes a move on the third coin difedint times. This flipped the fourth coin six
times, which is even. So from each coin’s pointiefv, it is the same as flipping it zero times!
Similarly, if we made a move on a particular comaald number of times, it is the same as
flipping it one time.Therefore, we only have to consider sequencespsfith which each coin is
chosen either O or 1 times.

With this in mind, let’s look at the endpoints. Fbe first coin to be flipped, the second coin
must be flipped exactly once. But then the secambithird coin shows tails after this flip, and so
the third coin must be chosen for a move 0 timesitiGuing along the row to the right, it
follows that the fourth coin is flipped 0 timesetffth coin flipped 1 time, the sixth O times, etc
flipping every third coin. But this leaves the 1@thin unflipped, and so it is indeed impossible
to get the coins to show all tails.

2. For a triangle of any size, we can always ma&ean on precisely those coins which are in
triangles that are in the same orientation as titieeegrid, that is, we can scale the smaller
triangle up without rotating to obtain the largeangle. This will flip each of the chosen coins
once and all of the other coins exactly 3 timeghso all of the coins then show tails. However,
this is not the only way to solve the trianguladgrroblem. For the triangular grid of side length
2, we can simply choose the middle coin to makeoaanand we are done in one move. Bonus
Question: Can you see a way to solve the trianguldrof side length 4 with only four flips?

3. For the 3 3 grid, we can make a move on the center squatréharfour corners to win. For
the4” 4and 5 5, we can make a move on the squares as shovne @mitls below.
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The Pigeonhole Principle

by Lauren McGough

In this problem set, when | say “number”, | mearirdager, that is, a counting number, the
negative of a counting number, or zero.

1. Suppose you have a drawer that contains exsigtlylack socks, eight blue socks and nothing
else. Imagine pulling socks out of the drawer weifles closed. What is the minimum number of
socks you need to pull from the drawer in orderyfmu to be 100% sure that you have pulled out
two socks of the same color? What if you startwaith a drawer that contains four red socks as
well as six black socks and eight blue socks — goas answer change? What if you start out
with a drawer that contains socksnoflifferent colors with four socks of each color?

2. This spring at Girls’ Angle, we spent a lotiofi¢ discussing numbers written in different
bases: we discovered that thieary number system, for example, is a way of represgntin
numbers using only the digits 1 and 0, and thatehsarynumber system is a way of
representing numbers using only the digits 0, 1Zan@an you show that, given any four ternary
numbers, at least two of them must share the sasheligit? What if you are given any nine
binary numbers — what is the maximum number of thigahis always guaranteed to share the
same last digit? Suppose we write numbers in Nagéan you prove that, gived + 1 numbers
written in baseéN, at least two of them must share the same lasfd@jitenN? + 1 numbers
written in baséN, can you prove that at least two of them mustestiae same last two digits?
More generally, can you prove that, givéA+ 1 numbers written in bad¢, at least two of them
must share the same lastigits?

3. Suppose that there are sixteen girls at teerfieeting of Girls’ Angle, and suppose that every
girl shakes hands with some number of other didisgxample, Girl 1 might shake hands with
five others and Girl 2 might shake hands with thoteers). Show that at least two of the girls
shook hands with the same number of people.

4. You are given a collection dfintegers. Show that there exists some pair of nusnbeyour
collection whose difference is divisible bly- 1. Can you show that there is some (nonempty)
subcollection whose sum is divisible N¢ (A subcollection might contain only one integer, in
which case, the sum of the integers in that suéctiin is just the integer itself.)

5. The Fibonacci sequenisea famous sequence of numbers that is formedllasvs: The first

two numbers in the sequence are both 1, then eddeguent number is the sum of the two
numbers that precede it (so the first few Fibonaconbers are 1, 1, 2, 3, 5, ...). Prove that the
last digit of the Fibonacci sequence is eventuadiodic (it eventually repeats — for example,
the sequence 1, 2,3,7,9,5,8,3,9,2,9,4%,2,5, 2,4,9,5, 2,4, ... would be eventually
periodic if it just continued repeating “9, 5, 2,fdrever because even though it didn’t start out
periodic, it eventually became a repeating seqye@a@n you also show that the last two digits
of the Fibonacci sequence are eventually perio@ex? you extend this even further to show that
the lastn digits of the Fibonacci sequence are periodic?
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Solutions(Lauren McGough)

1. If we havandifferent designs and at least one pair of at leastof the designs, we need to
pull out at leasin + 1 socks. If we pull oun or fewer socks, then we could ge{or fewer)

socks of different designs, so the minimum to b&rgateed to have a pair has to be greater than
m. But if we pullm + 1 socksthen we will have more socks than we have desgmat least two

of the socks must have the same design, so welraustpulled out a pair. Using this fact,
assuming we have at least one pair in each caledfiwe have 2 different colors of socks, we
need to pull three to be guaranteed a pair; ane ihave 3 different colors of socks, we need to
pull four to be guaranteed a pair.

2. In baseN there areN options for each digit. This means there Mfgossibilities for the lagn
digits of any number (where if a number has fewwanm digits, we just fill in the unused digits
with zeros), and thus if we had&' + 1 numbers written in bade, at least two of these share the
same lasm digits in the same order. Moreover, this is a mimm since there and™ distinct
possibilities for the lagh digits of a number written in badé so some collections of any fewer
thanN™ + 1 numbers will have distinct last digits, and we are not guaranteed that two of them
have the same lastdigits. (Note that by “the same lastdigits,” we mean the same values in
the same order.) It follows that if we have fountgy numbers, at least two of them will have
the same last digit, and we can see that sincé 9 2 + 1, if we have nine binary numbers, at
least five of them will have the same last digit fobu see why?). The other statements follow by
substituting different values af in the fact shown above.

3. We note that each girl could have shaken hanitisas few as 0 girls or as many as 15 other
girls; this gives us 16 options for the number iofsgo have shaken hands with and we know we
have 16 girls. However, if one girl shook handswitgirls, no girl shook hands with 15 other
girls, since that girl would have had to have shakands with all the other girls. Similarly, if

one girl shook hands with 15 girls, no girl sho@ts with O girls. Thus, there are really only
15 possible options for the number of girls eachagiuld have shaken hands with: 1, 2, 3, ...,
14, and either 0 or 15 but not both. We then h&vgids and only 15 options for the number of
girls each girl shook hands with, leaving us toatode that at least two girls must have shaken
hands with the same number of girls.

4. Let’s call theN integersay, a,, a3, ..., an. For the first question, note that there are dhiyl
possible remainders when you divide a numbexbyl. By the pigeonhole principle, at least
two of theN integersay, a, as, ..., ay must therefore leave the same remainder whemiyode
them byN - 1. Their difference must then be divisibleNby 1.

Here’s one way to solve the second question: CensietN sumsa;, a; +ap, ap +ax +ag, ..., a1
+ap+ag+...+ay. If any of these sums are divisible Ilythen we are done, so let us assume
that none of these sums are divisiblé\oyin that case, when we divide eachNpythe

remainder will be a number between 1 &hdl, inclusive. Because there &fsums, by the
pigeonhole principle, at least two must leave #ae remainder. Suppose the two sums that
leave the same remainder afera, +az +...+as anda; +a +az+ ... +awherel s<t

N. Then, their differencea{ +a; +ag+...+a ) - (@ +tax+ag+...+a) =as1+ ... +a must
be divisible byN, and we’re done!

5. See page 15.
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“Distance” Between Numbers

by Elisenda Grigsby

We all know instinctively what we mean by numbeegly “close” or “far.” For example, 4 is
closer to 5 than it is to 6, and itsuchcloser to 6 than it is to
1000. But how do we actually quantify what ourtimsts tell < : .

? That's easy! If we want to know the distapesveen two positive number is the number itself, and the
us: y: A . absolute value of a negative nhumber is -1 times
numbersx andy, —let's denote this distance kifx, y)— we just | that number. For example, |5| = 5, and |-5] = 5.
take the absolute value of their differendgx, y) = X - y|.

Recall that the absolute value of zero or a

Using this notion of distance, we compute téd, 5) = |4 - 5| = |-1| = 4(4, 6) = 2, andi(4,
1000) = 996. In other words, the definition ofstdince” | defined above matches our instincts.
The larged(x, y) is, the “farther apartk andy are.

| would like to tell you about eompletely differenfbut, in a certain sense, just as valid!) notion
of distance between numbers that is completely teoda our intuition about distance. Let’s

define this new notion of distance as follows. [Sgex andy are whole numbers, and suppose
ais the maximum number of times we can dividey| by 2 and still get a whole number. Let's

define the “2-adic” distance betwermndy, denoted (X, y), as follows: (X, y) = Z—la Since

it is not clear what to do whett y = 0, we also assert;(x, x) = 0.

So, for example, »(6, 14) = 1/3 = 1/8, since 6 - 14 = -8, and we can divide |-8|by 2 three
times and still get a whole number.

1. Compute the following 2-adic distanceg(10, 6), »(90, 10) and (194, 2).

2. Show that the 2-adic distance function satigfiesso-called “triangle inequality”: ¥, y andz
are numbers, them(x, y) + 2(y, 2) is greater than or equal ta(x, z). Show that the “normal”
distance function | defined at the beginning alsiisfies the triangle inequality.

3. Make a list of whole numbers, X, X3, X4, €tc. that satisfy the inequalities
2(0,X1) > 2(0,%2) > 2(0,%3) > 2(0,x4) > ...

4. Suppose is any prime number and betindy again represent whole numbers. Define the
“right” notion of the ‘p-adic” distance betweenandy (in particular, you should be able to show
that it satisfies the triangle inequality and the&tahce between two numbers should be 0 exactly
when the two numbers are equal).

5. Suppos@ is any prime number andandy are fractions. How should we define theadic
distance betweexandy?

! Every “self-respecting” distance function shouddisfy the
triangle inequality, which roughly says, “It is @ws shorter to
go directly fromx to z, without stopping at any other poiwt,
along the way.”

2 A fraction is any number that can be written amiatient of
two whole numbers.
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Solutions(Eli Grigsby)

1. Note that asking, “How many times can we divadeumberN, by 2 and still get a whole
number?” is the same thing as asking, “How mangsitan we multiply 2 by itself, and still get
a number that evenly dividé&®” In other words, “What is the largest power dhat evenly
dividesN?” We compute:

a.|10- 6| =4. Now 2 2 = Z= 4 evenly divides 4, but22” 2 = 2= 8 does not. Therefore,
»(10, 6) = 1/3 = 1/4.

b. |90 - 10| = 80. Now“2 16 evenly divides 80, buf 2 32 does not. S0,5(90, 10) = 1/16.

c. |194 - 2| = 192. Now’2 64 evenly divides 192, buf 2 128 does not. S0,(194, 2) = 1/64.

2. First let’s show that the “normal” distance ftion satisfies the triangle inequality. Note that
if Xx =2z, thend(x, 2) = 0 and there is nothing to prove. So assume. Now, eithely is between
x andz (and possibly equal to one or the other) or itist y is betweerx andz (that isx vy
zorz y X),thend(x, 2) =d(x,y) +d(y, 2. If yis not between andz, then we must either
haved(x, y) >d(x, 2) (that is,x is farther fromy than it is fronz) ord(z y) > d(z X) (that is,zis
farther fromy than it is fromx). In both cases, the fact that a length (and¢céethe distance
between two numbers) is always nonnegative allesw® wonclude that(x, z) is always less
than or equal td(x, y) + d(y, 2).

To show that the 2-adic distance function satigfiestriangle inequality, we will again consider
two cases: eitheris betweernx andz, or it isn't.

In the first casex} zl = k- y| + ly - 2, so if 2is the largest power of 2 dividingdy|, and is
the largest power of 2 dividing { |, then}- z| is divisible by 2, wheremis the smaller of and
k. Here, we are using the fact thaa,ib, andc are whole numbers, ardevenly divides botlb
andc, thena evenly divides + c¢. Furthermore, 2" * does not divided z. (Why? Hint: Ifa
evenly divides botlb andc, thena evenly divided - ¢.) Therefore, 2is the largest power of 2
that divides®- z, so 2(x, 2) = 1/2". But this is less thany(x, y) + 2y, 2) = 1/2 + 1/Z, which
proves the triangle inequality in this case.

In the second case, eithgr | =y -x| + k-2 or k-y| = k-2 + y - Z. Using the same type of
argument as we used in case 1, we can again centtiatlif 2is the largest power of 2 dividing
IX - y|, and 8is the largest power of 2 dividing{ z|, thenx - z| is divisible by 2, wheremis the
smaller of] andk. Furthermore,’?”_does not dividex|- . So, again, we have(x, 2) = 1/2",
and »(X,2) oY)+ oy, 2 =1/2 +1/% as desired.

3. There are many such lists, but here is a simpée Just let; be 2,x, be 2= 4, x; be 2=8,
and so on (in general, defirgto be 2). Then

2(0,%1) =1/2> 5(0,%2) =1/4 > ,(0,x3) =1/8 > ,(0,x4) =1/16 > ..., as desired.

Any list satisfying the property that, for eathx, is divisible by a higher power of 2 than. 1
will satisfy the desired property. Can you thirflother lists?

4. Just replace “2” byg” in all of the definitions
and in the proof of the triangle inequality!
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5. To find the “right” definition of thg-adic distance between two fractions, we shouldtiuse
fact that a fraction is a ratio of two whole nungeWe also want the definition to match the
definition we have already made for ghh@dic distance between whole numbers.

Suppose that andy are fractions. Start by computing ly|. The result will itself be a fraction,
a ratio of two whole numberaib. We know that the definition of theadic distance should
involve powers of, since it should match the original definition wtab is a whole number.
But a andb are themselves whole numbers! Why not see howympawers ofp dividea, and
how many powers gf divide b, and record the answer somehow?

We should be careful, though. Remember that didradoes not have a unique expression as a
ratio of two whole numbers. For example, 27/18espnts the same fraction as 3/2.
Furthermore, 27 is divisible by’ &nd 18 is divisible by»while 3 is only divisible by 3and 2

is divisible by 3. Note, however, that thiifferenceof the two exponents is well-defined for the
fraction: 3-2=1-0=1.

This suggests that we define fr@dic distance in terms of this difference, asofeB: If k- y| =
alb, then ,(x,y) = 1/ “Kwherej is the largest power gfdividing a andk is the largest power
of p dividing b.

So, in the above example;(3/2, 0) = 1/3.
Making sure that the triangle inequality works flois extension of the definition of thpeadic
distance is a good exercise, using essentiallgdhge ideas we used in the solution to problem 2,

taking care to add and subtract fractions corredfiie leave this verification to the patient
reader.
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Math and Tarot Cards

by Gregg Musiker

A Tarot Deck consists of 78 cards. 56 of the carésknown as minor arcana and come in four
suits (Wands, Cups, Swords, and Pentacles). Raicbosisists of 14 cards (A, 2, 3,4, 5, 6, 7, 8,
9, 10, Page, Knight, Queen and King). The remgi@ia cards are known as major arcana and
include the Fool, Magician, High Priestess, EmprEssperor, Hierophant, Lovers, Chariot,
Strength, Hermit, Wheel of Fortune, Justice, Hanged, Death, Temperance, Devil, Tower,
Star, Moon, Sun, Judgment, and World. Major arcimaot have suits.

Glenda is a Tarot card reader and recently has $ssng some eerie coincidences among the
cards. She believes the cards may be tellingdraething. She is of the impression that she
used to be strong-willed and until very recentlysvaastar, but that she is presently being quite
foolish. Foolish enough, she will be taken in bguaning Emperor in the near future, with
whom she will fall in love. However, it appearstlthis will lead to her downfall and she will

be left alone after her fortunes turn. Her onlpéds that a wise priestess or empress can allay
her fear and help steer her towards a better dntome.

Help set her mind at ease by computing probatslitie all of
these problems, ten cards are freshly dealt inetheard Celtic
Cross layout (pictured at right).

1. What is the probability that the Fool card i$wsition 1 (the
present) and the Emperor card is in Position 6i(tlreediate
future) in the same reading?

2. How probabile is it that Positions 3 and 4 (ttstadht and
recent past) include the Strength card and theCatad, in either
order, in the same reading?

3. What is the probability that the Judgment otidasard is in
Position 2 (the immediate challenge) and the LowgeShariot
card is in Position 5 (the best outcome) in theessa@ading?

4. How likely is it that at least one of the cad#slt in Positions 7-10 is the Wheel of Fortune,
Hermit, or Magician card?

5. What is the probability that the High Priestasd the Empress both appear in the ten card
spread?

6. How likely is it that at least one of the cad#slt in Positions 1-6 is the Sun, Moon, or World?
7. Glenda does seven readings in a row, and, faftehing, notes that the High Priestess
appeared three times (possibly more) in the sevadimgs. What is the probability of this
event? Should Glenda be surprised? Explain.

Same question, except now Glenda does fourteen
readings? Twenty-one readings?
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Solutions(Gregg Musiker)

1. We start with a deck of 78 cards. If we deéklo¢ top card and place it in position 1, there
are therefore 78 possibilities it could be. Onlyfthese is the Fool card. Therefore the
probability that we deal the Fool card in positibis 1/78.

We then deal out cards into positions 2-5 andHergurposes of this question, do not care what
we get. We then deal a card into position 6. Ifagsume that we have already dealt the Fool
card into position 1, there are 77 cards remaimrtge deck. Only one of these is the Emperor
card. Therefore there is a probability of 1/77 the Emperor card is in position 6 (if we assume
the Fool card is in position 1). This is cal@@hditional probability . The probability of both

of these events happening is the product 1/1877 = 1/6006.

2. This problem is similar to the last. It doe$ matter that we are asking about positions 3 and
4 instead of positions 1 and 6. Howeveddesmatter that we will accept either order (Strength
in position 3 and Star in position 4, or, Star asiion 3 and Strength in position 4).

The probability of having either Strength or Staposition 3 is 2/78. Then the probability of
having either Strength or Star in position 4 (assgrthat we already succeeded in obtaining
Strength or Star in position 3) is 1/77. Therefibre total probability is 2/78 1/77 = 1/3003.

3. The probability of Judgement or Justice in posi is
2/78. The probability of Lovers or Chariot in piosn 5
(assuming Judgement or Justice in position 2)74%.2Note
that since there is no overlapping of cards tinnetithe
probability of success is higher. The total praligts
therefore 2/78 2/77 = 2/3003.

4. One way to solve this problem is to apply thprapch
above: We first calculate the probability of Whetl
Fortune, Hermit, or Magician in position 7 (which3/78).
If such an event occurs, it doesn’t matter whatpleag in
positions 8-10, we are guaranteed a layout wherkeéat
one of cards dealt in positions 7-10 is Wheel atirte,
Hermit, or the Magician card.”

There are other ways to succeed. There is a pitdpaid
75/78 that the card dealt in position 7 isn’t afyhe three
desired cards. In this case, there is one |lesssinadble card
out of the deck and the probability of dealing ofhéhe three
special cards into position 8 is 3/77. Even i§tfiils, there
is still a possibility of success, if the correatas shows up

The Wheel of Fortune from
the Ride-Waite Tarot Dec

in the 9th or 10th spot.

Taking into account all of these possibilities, ag#l up the probabilities since the scenarios that
we have described are independent from one another:

3,753 + 7574 3+ 757473 3 281%14.8%.

78 7877 787776 78777675 19019
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Note that this probability includes the possibitityat two or all three of these cards show up.

A second, and perhaps easier, approach to thisgonadiarts by calculating the probability that
none of these three cards shows up in positior& Tiere are then 75 out of 78 possible cards
for position 7 and 74 out of 77 possible cardspimsition 8 and 73 out of 76 possible cards for
position 9 and 72 out of 75 possible cards forgwsil0. Thus the probability that none of the

75 74 73 72_ 1620
three cards show up is— =
78 77 76 75 1901

answer to the question because the event whereafdhe three cards appear and the event
where at least one of the three cards appear araftyuexclusive.

. If we subtract this quantity from 1, we get the

5. This can be answered using the exhaustive metihatar to the first approach for solving
problem 4. We present an alternative solution wlhez break down the question by
characterizing the ten card layouts that have bbthese cards, and reducing this to an earlier
guestion.

Since we want both the High Priestess and Empeesls to appear, we need to specify which
positions they appear in.

There are 10 9 = 90 choices since there are 10 slots for thyh Ririestess card, and 9 slots
remaining for the Empress, assuming that the Higgsfess has already taken up a slot. Once
specific positions have been fixed, the problenuced to problem 1. Thus the probability of
both of these cards appearing somewhere in thadse®0 times more likely than the
probability of the High Priestess in position 1 dhd Empress in position 6. Thus the
probability is 90/6006 = 15/1001.

6. This problem is similar to problem 4. We ficsiculate the probability that positions 1-6 do

not contain the Sun, Moon, or Worlel7:§’ 14 73 2 11 ;70 213

——. The answer is
78 77 76 75 74 73 271

1- 2839 587, 51 6u.

2717 2717

7. This problem has multiple parts. First, we needalculate the probability that the High
Priestess appears as one of the ten cards inythetlaSince we are dealing out 10 cards out of
the 78 card deck, the probability is 10/78.

Each reading is an independent event, so to cadctila probability that the High Priestess
appears in at least three of seven readings, wihab@aomial distribution . This is just a fancy
way of saying that we must calculate the probahiliat the first three readings contain the High
Priestess and the final four do not. We then mlylthis probability by the number of ways
these three readings can be distributed amongetrengsuch as the first, third, and sixth
readings containing the High Priestess and thensgdourth, fifth, and seventh missing this
card). This kind of computation arises frequeatig so there is a name and symbol for the
number of ways to pick oltthings from a set cd

a
things: ‘a chooseb”, or, in symbols, b
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7 Ve
Here we need 3" which is; 6

,

i (can you see why?).

We then do a similar calculation for the probapithiat the High Priestess card appears exactly
four times, five times, six times, or seven times.

Thus the probability is:

3 4 5 6
7 7 7 7 7
10°, 10,7, 10°, 10,7  10°, 1% . 10, 12 . 1d 0
78 78 5 78 78 6

=~ 1= =~ 1 = —qQ
78 7 3 78 78 4 78 8 7

which is approximately 4.9%.

This is a pretty low probability. However, please below for a more advanced answer to
“whether Glenda should be surprised?”

To calculate the probability that the High Priestappears iat leastthree out of fourteen
readings, we calculate the exact probability thet tard does not appear in any reading, the
probability the card appears in exactly one readang the probability it appears in exactly two
readings. The answer is then 1 minus the sumesktkthree values:

0 1 2
14 14 2 14
1- 10 (t 10)14 .10 41 _1§3 10 -1 1% » 26.49.
78 78 0 78 78 1 8 8 2

Similarly, for 21 readings, the probability is

0 21 ! 21
1_0 3 1_0)21 - iO 4] i%zo 1_

2
21
10 -1 —1%9 » 51.69,
78 78 0 78 7 78 7 2

1-

which means this will happen more than half thestim

We now discuss a second, more complicated, ansviketquestion “Should Glenda be
surprised after seeing the High Priestess appdharee out of seven readings?”

The crucial observation is that as Glenda begafirgtaeading, she was not looking specifically
for how many times the High Priestess would apdaarpnly noticed the pattern after all seven
of the readings. In fact, if any of the 22 majorama cards had shown up at least 3 out of 7
times, it might have looked like more than merencimence.

So, as an extra challenge problem, think about ymwwould calculate the probability that at
least one of the 22 cards appears at least thte® saven times. This is laborious to calculate
directly, but running computer simulations, thelability turns out to be around 84%!!! Taking
this into account, Glenda should not be as sumbrise

or spooked by the Tarot cards.
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Chess Road Trip

by Grace Lyo

Taylor Walker and her older sister Casi are onad toip to the Grand Canyon with their parents.
They brought a chess set and dominos to pass thg moarrs they will be spending in the car.
After playing dominos for a couple hours, they lgpeted and decide to play chess, only to
discover that they forgot to bring the pieces! Thegide to invent games and puzzles of their
own instead.

Dominos Casi comes up with a puzzle for Taylor first. Edomino is exactly the
size of two squares on the chess board, so it eguideed on the board horizontally
or vertically as in the diagram at right. Casisaslaylor if in each of the scenarios
below she can arrange the dominos so that evearegxcept those marked with a
yellow star is covered (see pictures (a) through Will Taylor be able to find
domino tilings that work?

a. b. C.
(d) After solving (a), (b), and (c), Taylor askssCé there is any quick and easy way to
determine whether a board minus a few squaresedted. Is there? If so, prove that your
solution is correct.

Horses Taylor, having solved Casi's domino-tiling puznlew gives Casi a
puzzle of her own. A “knight” is a chess piece tloaks like a horse. It
moves in a very special way. In one turn, it caheximove

horizontally two squares and then vertically oneasq, or

vertically two squares and horizontally one square.

Two chess knights are “attacking” each other ifytben move
_ _ to each other’s squares in one turn. At right tlaek knights
Possible moves for the knight$ are attacking the white knight and vice versa,rmute of the

black knights are attacking each other.

(a) What is the maximum number of knights that loamplaced on the chessboard in such a way
that no two knights are attacking one another?

(b) Challenge question: Prove that your answer is
correct. Note that coming up with a configuration
and then showing that no more knights can be
added to that configuration is not a valid proof!
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Solutions(Ken Fan)
Dominos

a. Yes

b. No. Removal of 3 squares results in an odd nuwibsquares and any tiling by 21 dominos
involves an even number of squares.

c. No. Every domino must cover one dark and ayig kquare. This means that any tiling by
dominos must cover a region with an equal numbelaodf and light squares. Removal of two
dark squares from a chess board results in a lwa#iranore light squares than dark.

d. There’s no quick way to determine this in gehekHowever, there are a few ways to quickly
see that some cases can or cannot be tiled. Bor@&, removal of an odd number of squares
will result in a board that cannot be tiled. Alsiwere is this result of Gomory:

One can always tile a board that results from deleting any one dark and any one light square
from a chessboard using two by one dominos.

Can you reprove this result? If you'd like to reagdroof, see page 66 of the bddkthematical
Gemsby Ross Honsberger.

Horses
a. 32.

b. Observe that knights always move to a squadifetent color. Thus, if knights are placed
on all of the light squares, they will all be akexg empty dark squares and not each other.

To see that more than 32 knights is impossiblellwsé the fact that a knight can travel about a
chess board in such a way as to visit every orieeo64 squares exactly once before returning to
its starting location. Such a circuit through 8#esquares of a chessboard is known as a
knight's tour . Finding a knight's tour is a famous puzzle Isgit; can you find one?

If we now place more than 32 knights on a chessdbaad imagine how these knights are
arranged with respect to a knight’s tour, we canthat some two knights must be adjacent.
After all, if the next square in the knight's taafter each knight is empty, there would be more
than 32 empty squares along with the more than 32

squares occupied by knights. But two knights

adjacent to each other on a knight’s tour must be

attacking each other.
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Cars and Goats

by Kay Kirkpatrick

You're a contestant on a game show, and you asepted with three doofs.
Behind two of the doors there are goats; behindtind, a car. The game-show
host knows what is behind each door and invitestgazhoose a door. Once you
have chosen one of the doors (but not openedhé@)host must open a different
door to reveal a goat. Then you are invited todwib the other unopened door if
you wish. You get to take (or drive) home whatedind the door of your choice,
and you want the car. Should you switch?

1. First, play this game with a partner and thi@elg, the ace of spades to represent the car and
two red cards to represent the goats. One of ytbwithe host and will place the three cards
face down, knowing what they are. The other wilkle contestant and will select (but not look
at) one card. Then, remembering the remaining @vds; the host will turn over one of them to
reveal a red card. Then the contestant will dewaidether to switch. After that, look to see
whether you won the ace. Take turns being the starteand the host, and play this game 10 or
15 times, recording whether you switched and whetbe won. How often did you win when
switching? When not switching? Do you see a pattern

2. Next, imagine playing the game with 10 doorsaad of three. In this variation, the host
would invite you to choose one, and then would dpehthe remaining doors, revealing 8
goats. Would switching increase your chances ohimgpthe car? Why? (You can play this
variation with a partner, the ace of spades, areti®ards.)

3. Let’s analyze the 10-door variation of the gdopeases. You will initially choose either the
door with the car behind it or one of the othersutave one chance in 10 of initially choosing
the door with the car behind it, or as we say, tagtpens with probability 1/10. Does switching
result in winning in this case? On the other havith what probability do you initially choose a
door with a goat behind it? Which doors will theshopen then? And does switching result in
winning in this case? Now look over your analysid aummarize it by answering this question:
Is the strategy of always switching a good one?

4. We can analyze the original three-door problemiarly. With what probability do you

initially choose the door with the car behind it2WMivhat probability do you initially choose a
door with a goat behind it? Which doors could oulgahe host open? Is the strategy of always
switching a good one?

5. What if, in the 10-door variation, the host way@pen only 7 doors, revealing 7 goats?
Would switching increase your chances of winning?at\about only 67 Only 1?

6. What if, in the three-door problem, the hostsdieknow what's behind the doors and just
opens one of the two remaining doors at randortt®eltar is revealed, then the game is over
with no prize. If a goat is revealed, then youiaxgted to switch. How would this variation
affect your strategy?

! The game described here is often referred to &y#me of the
host who popularized it. We'll reveal that hosthwthe solutions.
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Solutions(Kay Kirkpatrick)

This is called the Monty Hall problem, after theshfor the game sholet’'s Make a DealThe

short answer is you should always switch- it dosilyleur chances of winning! Here’s why.

If you play the game long enough, you'll find yoeifsvinning about twice as often when
you switch than when you don’t switch.

With 10 doors, the crux of the problem becomesreledf you play this version of the game
with cards, you'll find yourself winning much mooéen (nine times as often) when you
switch than when you don't.

One time in ten you will select the car at the bagig. In this case, Monty Hall can open
any 8 of the 9 remaining doors, because all 9 gaats behind them. Thus switching will
result in losing this one time in ten, or, 10%lwé time. What about the other nine times out

of ten? With probabilityl% the car is behind one of the doors that you didsetect. Monty

Hall can’t open the door with the car behind it h@must open the other 8 doors. Switching
in this case will result in winning 90% of the time short, the strategy of always switching
is nine times better than not switching: it incesagour chances of winning to 90% from
10%.

The probability that you originally chose the dewoth the car is%. The probability that the

car is behind one of the other two doorsg—isOnce one of those doors is openedéhe

probability remains with the other door, twice firebability that you chose the car
originally. So the strategy of always switching blms your chances of getting the car.
Another way of thinking about this is in terms bétfollowing diagram.

Choose:| Probability | Monty opens| Switch to: | Win on switching? | Win on staying?
1 Goat A Goat B
r = N Y
e 3 Goat B Goat A ° s
Goat A % Goat B Car Yes No
1
Goat B 5 Goat A Car Yes No
. . 2 1
Proportion of wins on strategy: 3 3

You will win on staying only one-third of the tim#hat is, only when you choose the car
with your first pick. You will win on switching

two-thirds of the time, when you choose a goat

at first. This is twice as good as the staying

strategy.
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If Monty opens only 7 of the 9 remaining doorshee tL0-door variation, switching still gives
you an advantage: there’s still a 10% chance heatar is behind the door you originally
selected, but a 90% chance that the car is belmaabthe other two doors that he leaves
open. So switching to either of those two doorsdases your chances of winning from 10%
90%

to

= 45%. Similarly, if he opens only 6 of the remagdoors, there’s a 90% chance

that the car is behind one of the three unopenedsdbesides your original choice), so
switching to any of those three increases your céswof winning from 10% to 30%. If he
opens only one of the 9 remaining doors, switclhigny of the other 8 increases your

0,
chances of winning from 10% t%(g) =11.25%. So each door that Monty opens gives you

useful information about where the car is not.

The following table illustrates the breakdown o thodified game.

Choose:| Probability | Monty opens| Switch to: | Win on switching? | Win on staying?
1 Goat A Goat B
car 3 Goat B Goat A No Yes
Goat A 1 Goat B Car Yes No
3 Car Game over - -
Goat B 1 Goat A Car Yes No
3 Car Game over - -
Proportion of wins on strategy: 1 + 1: 1 1
6 6 3 3

With probability%, you choose the car at first, and this part issdrae as before. But if you

choose a goat at first (probabilié/), Monty Hall has an equal chance of revealingcire

(probability%- game over) as the other goat (probab'%ty In other words, you have an

equal chance of winning regardless of whether gtrnategy is switching or staying.
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A Potpourri of Problems

by Doris Dobi

If none of the other problems caught your fancyhpps
one of these miscellaneous ones will!

1. Each natural number can be decomposed intodupr
of primes. For example, 24 =212,154=2 7" 11 and
23 = 23. This is called decomposing a number itstpiime
factorization. Let us call a number “spunky” if ggme
factorization consists of exactly three consecupirimes.
The first spunky number is 30 = 23" 5. Find the fourth
spunky number.

2. An analog clock reads 3:15. What is the angte/den
the minute hand and hour hand?

3. There are 3 black hats and 2 white hats in a Bosee men, which we’ll
call A, B, and C, each reach into the box and ptaeeof the hats on his own
head. They cannot see what color hat they haveeohd$ie men are situated
in such a way that A can see the hats on B andhé€dsls, B can only see the
hat on C’s head and C cannot see any hats. Wheragked if he knows the
color of the hat he is wearing, he says no. Whendked if he knows the
color of the hat he is wearing he says no. Whes &ked if he knows the
color of the hat he is wearing he says yes ang herrect. What color hat is
C wearing and how can he know?

4. Imagine an analog clock set to 12 o’clock. Nbeg the hour and minute
hands overlap. How many times each day do bothdlbie and minute hands
overlap? How would you determine the exact timethefday that this
occurs?

5. Alba, Ada and Antea are best friends. One ofjie always tells the truth, one always tells
lies, and one answers yes or no randomly. The kdsv each other very well so that each girl
knows which girl is which. You may ask three yesorquestions to determine who is who. If
you ask the same question to more than one pemomust count each time you ask as one of
the three questions asked. What three questionddsiiou ask?

6. On a deserted island there live five peopleantbnkey. One day everybody gathers coconuts
and puts them together in a community pile to védéd the next day. During the night one
person decides to take his share himself. He dsvilde coconuts into five equal piles, with one
coconut left over. He gives the extra coconut torttonkey, hides his pile, and puts the other
four piles back into a single pile. The other f@landers then do the same thing, one at a time,
each giving one coconut to the monkey to make iles divide equally. What is the smallest
possible number of coconuts in the original pile?
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Solutions(Doris Dobi)

1. For this problem note that the fist few primes 2, 3, 5, 7, 11, 13, etc. So, the fgptinky
number is the product of the first three primesnely, itis 2° 3" 5 = 30. The second spunky
numberis 3 5° 7 =105, the thirdis 57" 11 = 385, so the fourth is"711" 13 = 1001.

2. Draw a circle with 12 equally spaced dasheseating the hours. Since a circle consists of
360 degrees, it must be the case that betweemanguch dashes (i.e., between any two hours)
there are 36Q 12 = 30 degrees. Now, if it were exactly 3 o’clabk hour hand would be
pointing exactly at the 3, but since 15 minutesehassed (which is a quarter of an hour) the
hour hand is a quarter of the way between 3 antl4lee minute hand will be pointing at the 3.
Hence, there are 304 =7.5 degrees between the minute and the houk. han

3. First note that since A can see both the calbtee hats B and C are wearing, they cannot
both be wearing white hats otherwise A would codelthat he must be wearing a black hat.
Thus, B and C deduce that one of them must be mgearblack hat. Now, since B doesn’t know
the color of the hat he is wearing, it must bedase that C is wearing a black hat (otherwise,
from what we already concluded, B would know thi&t ivere wearing a white hat then he must
be wearing a black hat). Hence, C concludes th& twearing a black hat and he is right.

4. We show that such an event occurs 11 times a 8apgpose such a time occurx atclock

andy minutes, where is an integer from 1 to 12, inclusive ani a real number that satisfies 0
y < 60. The hour hand and minute hand overlap whermngle between them is O degrees (or

some integral multiple of 360 degrees). The angidarby the minute hand with the ray pointing

straight up is given byy6 because there are 60 minutes in 360 degreescha@nute must

count for 6 degrees. Similarly, the angle measbsethe hour hand with the ray pointing straight

up is given by 39+ 30 % degrees. (Check this!) So what we need is thana 3& +

30 6_>:) differ by a multiple of 360 degrees. Becausehefrange restrictions onandy, we

know that 0 6y < 360 and 30 30x + 30 % < 390. This means that we need only look for

cases whereyéand 3& + 30 6_)2) are exactly equal or the latter is exactly 36@tgethan the

former. In the first case, the equation beconyes 80k + 30 6_>:) which simplifies to 5.9 =

30x. Because is a real number, there is a solution for eacthefvalues ok from 1 to 10.
(Whenx =11, thery = 60, but we are restrictingto be less than 60.) In the second case, the

equation becomesg/6 3k + 30 % - 360, which simplifies to 5y5= 3 - 360. The only

solution to this (within our restriction on the ga) isx = 12 andy = 0. So, there are 11 such
times and they are at 12 o’clock sharp and then at

hours andi—(l)x minutes, where& can be any integer

from 1 to 11, inclusive.
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5. First, for simplicity let Alba, Ada, and Antea B, B, and C respectively. Note that there are
six possible scenarios. If we let the first positio a triplet correspond to the truth teller, the
second position correspond to the liar, and thel fhosition correspond to the random person,
then we can write, for instance, (A, B, C), to mézeat Alba is the truth teller, Ada is the liar,
and Antea is the random person. We thus have trgcsnarios:

1 2 3 4 5 6

(A, B, C) (A, C, B) (B, A C) (B,C, A (C, A B) G B, A

Follow these steps which will determine in no mitr@n 3 questions which scenario we’re in:

Step Action
1 | Ask A, “Is B more likely to tell the truth than?CIf yes go to Step 2, if no go to Step 5.
2 Ask C, “Are you the random girl?” If yes go tept3, if no go to Step 4.
3 | Ask C, “Is A the truth girl?” If yes then we’ra scenario 4, if no we’re in scenario 2.
4 | Ask C, “Is A the lying girl?” If yes we’re in soario 5, if no we're in scenario 6.
5 | Ask B, “Are you the random girl?” If yes go te@pt6, if no go to step 7.
6 Ask B, “Is A the truth girl?” If yes we’re in snario 6, if no we're in scenario 1.
7 | Ask B, “Is A the lying girl?” If yes we’re in soario 3, if no we're in scenario 6.

6. This is a version of a classic problem. Fromadbeditions, it must be that: The original pile
must have a number of coconuts such that you datnesti one and then divide by 5 and get an
integer. Possibilities are 6, 11, 16, 21, 26, @an you see why there cannot be just 1 coconut?)
After the first person is finished the remainingewvill have 4, 8, 12, 16, 20, etc. coconuts if
there were originally 6, 11, 16, 21, 26, etc. catenThe remaining pile after the first person
must have a number of coconuts such that you cain agbtract one then divide by 5 and get an
integer. Of the possible remaining amounts foulnd,anly that also have this property are 16,
36, 56, 76, 96, etc., and these will leave 1242860, 76, etc. coconuts after the second person
is done with the pile. The number of coconuts rerngi after the second person must again be
such that you can subtract one then divide evepnly.Possibilities are 76, 156, 236, 316, 396,
etc., and these will leave 60, 124, 188, 252, 816,coconuts after the third person is done with
the pile. Of these numbers, only 316, 636, 956612596, etc. have the property that if you
subtract one the result is evenly divisible byrig ¢ghese pile sizes will leave 252, 508, 764,
1020, 1276, etc. coconuts after the fourth persalone. The remaining pile after the fourth
person must again have a number of coconuts tlateisnore than a multiple of 5. The smallest
possibility is 1276, and this will leave 1020 coatmafter the fifth person is done with the pile.
So the fifth person will hide 1276 - 1020 - 1 = 25fgonuts and leave behind a pile of 1020
coconuts. The fourth person will leave behindla pf 1020 + 255 + 1 = 1276 coconuts and will
hide 1276, 4 = 319 coconuts. The third person will leaveibéla pile of 1276 + 319 + 1 =

1596 coconuts and will hide 15964 = 399 coconuts. The second person will leaveniolea

pile of 399 + 1596 + 1 = 1996 coconuts and willehi®96, 4 = 499 coconuts. The first person
will leave behind a pile of 499 + 1996 + 1 = 24@@@nuts and will hide 24964 = 624

coconuts.

We conclude that the original pile must have 624 +
2496 + 1 = 3121 coconuts.
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Girls’ Angle: A Math Club for Girls

Gain confidence in math! Discover how interesting and excitg math can be! Make new friends!

What is Girls’ Angle? Girls’ Angle is a math club for girls and a supportive community for €8 gind
women engaged in the study, use and creation of mathematics. Our primaoy isissifoster and
nurture girls’ interest and ability in mathematics and empower them to btodhtkle any field, no
matter the level of mathematical sophistication required. We affemprehensive approach to math
education and use a four component strategy to achieve our mission: Gitks’dgrgors, the Girls’
Angle Support Network, the Girls’ Angle Bulletin and Community Outreach.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each member as ignah@ind design
custom tailored projects and activities designed to help the mempeie at mathematics and develop
her thinking abilities. Because we believe learning follows nayundien there is motivation, our
mentors work hard to motivate. In order for members to see math as a liviniyecsabject, at least one
mentor is present at every meet who has proven and published original theorems

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the members how and for what they useaoia
member of the Support Network serves as a role model for the membersheroipety demonstrate that
many women today use math to make interesting and important contributionstg. sdtiey write
articles for the Bulletin, take part in interviews and visit thub .c

What is the Girls’ Angle Bulletin? The Girls’ Angle Bulletin is a bimonthly (6 issues per year)
electronic publication that features interviews, articles andrnrdtion of mathematical interest as well as
a comic strip that involves mathematics.

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We believe that when dagrsiefiorts are
actually used in real life, the motivation to learn math increases.

Who can join? Ultimately, we hope to open membership to all women. Currently, we are openilgrima
to girls in grades 5-11. We aim to overcome math anxiety and build solid foundatioves welcomeall
girls regardless of perceived mathematical ability. There is naragrtest.

In what ways can a girl participate? There are 2 waysnembershipandactive subscription to the

Girls’ Angle Bulletin. Membershipis granted per session and includes access to the club and extends
the member’s subscription to the Girls’ Angle Bulletin to one year fromténeas the current or

upcoming session. You can also pay per session. If you pay per session and come feethrg®un

will get a subscription to the BulletirActive subscriptionsto the Girls’ Angle Bulletin allow the
subscriber to ask and receive answers to math questions through emase rfeie that we will not
answer email questions if we think that we are doing the asker’'s hokiaMercurrently operate in 12
meet sessions, but girls are welcome to join at any time. The progradividually focused so the
concept of “catching up with the group” doesn’t apply. Note that you can receivelgieA@gle

Bulletin free of charge. Just send us email with your request.

Where is Girls’ Angle located? Girls’ Angle is located about 10 minutes walk from Central Square on

Magazine Street in Cambridge, Massachusetts. For security reasonmagambers and their
parents/guardian will be given the exact location of the club and its piuonieer.
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When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendar detailsepleas
visit our website atvww.girlsangle.orgor send us email.

Can you describe what the activities at the club will be likeGirls’ Angle activities are tailored to
each girl's specific needs. We assess where each girl is mathaipaticl then design and fashion
strategies that will help her develop her mathematical abilitiesryBudy learns math differently and
what works best for one individual may not work for another. At Girls’ Angle,re@ery sensitive to
individual differences. If you would like to understand this process in maaé, gg¢ase email us!

Are donations to Girls’ Angle tax deductible? Yes. Girls’ Angle is a registered 501(c)(3) corporation.
Please make donations outGals’ Angle and send checks to Ken Fan, P.O. Box 410038, Cambridge,
MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has a Ph.D.
in mathematics from MIT and was an assistant professor of matheatatlasvard, a member at the
Institute for Advanced Study and a National Science Foundation postdoctoral felladdition, he has
designed and taught math enrichment classes at Boston’s Museum of Scienoekaddmthe
mathematics educational publishing industry. Ken has volunteered émc8dClub for Girls and worked
with girls to build large modular origami projects that were disgglaat Boston Children’s Museum.
These experiences and the enthusiasm of the girls of Science Clubddra®e motivated him to create
Girls’ Angle.

Who advises the director to ensure that Girls’ Angle realizeds goal of helping girls develop their
mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, executive director of Science Club for Girls

Yaim Cooper, graduate student in mathematics, Princeton

Julia Elisenda Grigsby, assistant professor of mathematics,rBOsttege

Kay Kirkpatrick, Courant Instructor/PIRE fellow, NYU

Grace Lyo, Moore Instructor, MIT

Lauren McGough, MIT ‘12

Mia Minnes, Moore Instructor, MIT

Beth O’Sullivan, co-founder of Science Club for Girls.

Elissa Ozanne, Senior Research Scientist, Harvard Medical School.

Kathy Paur, Ph.D., Harvard

Katrin Wehrheim, associate professor of mathematics, MIT

Lauren Williams, assistant professor of mathematics, UC Bsarke

At Girls” Angle, mentors will be selected for their depth of understanding of mathematics as well as
their desire to help others learn math. But does it really mattethat girls be instructed by people
with such a high level understanding of mathematics2Ve believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tacktg/field regardless of the level of mathematics
required, including fields that involve original research. Over thaidest the mathematical universe
has grown enormously. Without guidance from people who understand a lot of math, thihask is
student will acquire a very shallow and limited view of mathematicshenghtportance of various topics
will be improperly appreciated. Also, people who have proven original theamashesstand what it is
like to work on questions for which there is no known answer and for which tlgitermot even be an
answer. Much of school mathematics (all the way through collegalvesvaround math questions with
known answers, and most teachers have structured their teaching, whetheustnscnot, with the
knowledge of the answer in mind. At Girls’ Angle, girls will learn tetgies and techniques that apply
even when no answer is known.

Also, math should not be perceived as the stuff that is done in math klaksad, math lives and thrives
today and can be found all around us. Girls’ Angle mentors can show girls how méghantreo their
daily lives and how this math can lead to abstract structures of enormenesi and beauty.
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Girls’ Angle: A Math Club for Girls

Membership Application

Applicant’s Name: (last) (first)

Applying For: Membership (Access to club, premium subscription)
Active Subscription (interact with mentors through email)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Emergency contact name and number

Pick Up Info: For safety reasons, only the following people will be allowed to pick up yoghttr.
They will have to sign her out. Names:

Medical Information: Are there any medical issues or conditions, such as allergies, thatiieuid to
know about?

Photography ReleaseOccasionally, photos and videos are taken to document and publicize our program
in all media forms. We will not print or use your daughter's name in any way.eJave permission to
use your daughter’s image for these purposes?  Yes No

Eligibility: For now, girls who are roughly in grades 5-11 are welcome. Although we will watkdar
include every girl no matter her needs and to communicate with you anytissuesy arise, Girls’
Angle has the discretion to dismiss any girl whose actions are digraptdiub activities.

Permission: | give my daughter permission to participate in Girls’ Angle. | hawael rand understand
everything on this registration form and the attached information sheets

Date:

(Parent/Guardian Signature)

Membership-Applicant Signature:

Enclosed is a check for (indicate one) (prorate as necessary)
$216 for a 12 session membership $50 for a one year active subscription
I am making a tax free charitable donation.

| will pay on a per session basis at $20/session. (Note: You still must tietuform.)

Please make check payable®xls’ Angle. Mail to: Ken Fan, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending enwiilgangle @gmail.comPaying on
a per session basis comes with a one year subscription to the Bulletinf theé math question email
service. Also, please sign and return the Liability Waiver.
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Girls’ Angle: A Math Club for Girls
Liability Waiver

[, the undersigned parent or guardian of the valhg minor(s)

do hereby consent to my child(ren)’s participatioirls’ Angle and do forever and irrevocably r&te Girls’
Angle and its directors, officers, employees, ageaund volunteers (collectively the “Releaseesiirfrany and
all liability, and waive any and all claims, fojumy, loss or damage, including attorney’s feesgny way
connected with or arising out of my child(ren)’'st@pation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissiéGols’ Angle or any of the Releasees. | forevelease,
acquit, discharge and covenant to hold harmlesRéieasees from any and all causes of action ant<lon
account of, or in any way growing out of, direabhlyindirectly, my minor child(ren)’s participation Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further ideig all
claims or rights of action for damages which my onichild(ren) may acquire, either before or afteron she
has reached his or her majority, resulting froncamnected with his or her participation in Girls\d@le. | agree
to indemnify and to hold harmless the Releasees &lbclaims (in other words, to reimburse the Rsées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdhe cost of
defending any claim my child might make, or thaghtibe made on my child(ren)’s behalf, that isasésl or
waived by this paragraph), in any way connecteti witarising out of my child(ren)’s participatiam the
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:

A Math Club for Girls
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